AD-A278 036

)N PAGE

mw
COPM No.

Mbnmmbud- | "waponse, including the time (o7 reviewing instructions, searching existing data 60urnes gathering
and maintaining the ¢ ‘ "mm" 1nts ragasding this burden estimate or any other aspedl of this collection of information, inckuding
suggestions for rech information Operations and Report: 115 Jetlerson Davie Highway, Suite 1204, W‘-V‘
222024302, and 1o the viinmw v wvvm i and Budget, Washington, DC 20603.
[T ASENCT U eave Tz REFORT T REFORT VPt AND DATES //
4. TITLE AND — — N
STLY Tystees, L /0T qHg See 1285 /
-T2 C-)"*‘\\ < \//"\X/ C'b\/ 41’9 ur~ L 5‘/§*"’”7-’
L/ r-;:' M) \
6.
Rothers
L,\J a " pi\Hr’ Sir FfE
MIN (S) AN o 8. PERFORMING
Ad)\ Valiisdorn Eomile L’M’-:f”?‘- 0o ptcal tos ‘s ORGANIZATION
A Sp/ Gl o ‘3 ’o'7/(. ﬁ\-'):,./" R
L s PR i P2
(1_),;“ }\+ - 6’5_:-1—(’((\)6:(,AC,‘D /! L)_.,J/‘T’\,/" \/1 L-I - 5
.S IN IN NCY NAME(S) AN - 10. i I
Ada Joint Program Office AGENCY
The Pentagon, Rm 3E118 -
Washington, DC 20301-3080 D T l C
[11. SUPPLEMENTARY
12a. DISTRIBUTION/AVAILABILITY
dmol::thab:ondc:pxond
for public release and sale; its
distribution is unlimited.
B WaxTom 200 ,

J . N - _ A , . SR B
Hos 0 D0 Levot foo [uatuecd VAX Qlonmar (Tomprt it
e JAX L0 redeld A0 pacices) iy ter Vi S 5';‘)

[. N ’ ; e Vd
\C’\(ii* —T’(o{‘.\% JLA L\)G t/é_'f%:uf /ép Cinle U1 }t\,r’?))
: i K - ’ ; I
(7-2'.“6 r\‘\-~’-‘;""p'(j US:/‘A/_ L D p 2 } Vame L AR .
G—L7 Ff.‘-.)) (Don«,;‘.:’; (o £ Do ;“”\)J V/rsen ™ {‘ , d

14. C

4d~} #flﬂf\w‘f“"

'*n /J hac ;L-LO

K_,J QOMP, l(f Vo "‘(U*".’\)L ‘ﬂ,”‘/.

2, Fofa)s Capoct 4 \ats T4, o, 7(/\ Ua], e PRCE
r?b' +(‘q{‘k: ‘;'«! r‘/. . [—._y("."P 4/\< ;_)/-,ﬁ"[/ 57"7 "/W‘/ﬁ _/’/'«./) 3
17. f . 19. SECURITY 20, LIMITATION OF
CLASSIFICATION < CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN "Standard Form 298, (Rev. 2-80)
Prescribed by ANS! S.

AVF Control Number: AVF-VSR-582.0394
Date VSR Completed: March 14, 1994
94-02-14-TLD

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 940305W1.11335
TLD Systems, Ltd.
TLD Comanche VAX/i960 Ada Compiler System, Version 4.1.1
VAX Cluster under VMS 5.5 =)
Tronix JIAWG Execution Vehicle (i960MX)
under TLD Real Time Executive, Version 4.1.1

Acceslon For / (Final)
NTIS CRA&I v
DTIC TAB 0O
Unannounced 0
Justification __] Prepared By:
Ada validation Facility
By 645 CCSG/SCSL
Distribution | Wright-Patterson AFB OH 45433-5707

Pcamas s o

Availability Codes

Avail and|or
Special

el |

DTIC QUALITY INNSPECTED &

94-11000
DOMERERR S g4 4 11 112

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 5 March 1994.

Compiler Name and Version: TLD Comanche VAX/i960 Ada Compiler System,
Version 4.1.1

Host Computer System: DEC Local Area Network VAX Cluster (comprising
2 MicroVAX 3100 Model 90 machines) (VMS 5.5)

Target Computer System: Tronix JIAWG Execution Vehicle (i960MX)
under TLD Real Time Executive (TLDrtx)
(Domain Configuration), Version 4.1.1

Customer Agreement Number: 94-02-14-TLD

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, validation Certificate 940305W1.11335
is awarded to TLD Systems, Ltd. This certificate expires two years after-
MIL~STD-1815B is approved by ANSI. :

This report has been reviewed and is approved.

Ada Validation Facxigli ty%

Dale E. Lange

Technical Director

645 CCSG/SCSL

Wright-Patterson AFB OH 45433-5707

Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office

David R. Basel

Deputy Director

Defense Information Systems Agency,
Center for Information Management

DECLARATION OF CONFORMANCE

Customer: TLD Systems, Ltd.

Ada Validation Facility: 645 C-CSG/SCSL
Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11
Ada Implementation:

Compiler Name and Version: TLD Comanche VAX/i960 Ada
Compiler System, Version 4.1.1

Host Computer System: Digital lLocal Area Network VAX Cluster
executing on (2) MicroVAX 3100 Model 90
under VAX/VMS §.5.

. Target Computer System: Tronix JIAWG Execution Vehicle (i960MX)
running TLD Real Time Executive (TLDrtx),
(Domain Configuration), Version 4.1.1

Customexr’s Declaration

I, the undersigned, representing TLD Systems, Ltd., declare that TLD
Systems, Ltd. has no knowledge of deliberate deviations from the Ada
Language Standard ANSI/MIL-STD-1815A in the implementation listed in this
declaration executing in the default mode. The certificates shall be
awvarded in TLD Systems, Ltd.’'s corporate name.

P

o Date: 10 Februarv 1994
Terry L. Dunbar, President

w— 4
.

vax/1960/TRONIX PAGE 1

APPENDIX A

APPENDIX B

APPENDIX C

www w [S SN 8 N [l o ol -
. .

. *
LWV SN

L] *
Wt =

w N =

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT 1-1
mms. e e © & & o o e o o » & e e o o e e e 1"2
ACVC TESTCLASSES e s e e e e e e e 1-2
DEFINITION OF TERMS o e e e e e e e e 1-3

mm TESTS . e & & & e e e & @ e o s o o s » 2-1
IWPLICABLE TESTS » & o & 8 s & s e 2"1
TEST MODIFICATIONS. . « v ¢ ¢ o o o o o o« o o o« o & 2-4

PROCESSING INFORMATION

TESTING ENVIRONMENT & ¢ ¢ v ¢ o o ¢ o o & & 3-1
SUMMARY OF TEST RESULTS e &« e e e & & & ° s s s e = 3-1
TEST mmo ® e e @ 6 & 8 & 6 & s & s & s & e o ' 3-2

MACRO PARAMETERS

COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
validation Procedures ([Pro92) against the Ada Standard [Ada83] using <he
. current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to (Pro92].
A detailed description of the ACVC may be found in the current ACVC User’s
Guide [UGB9].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
-validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

{Ada83] Reference Manual for the Ada Programming Lan ’
ANSI/MIL-STD- , February I -1987.

(Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] Ada Compiler validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides. a set of identity functions used to defeat some compiler
optimizations allowed by the Ada sStandard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -— for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.
Ada Joint The part of the certification body which provides policy and

Program guidance for the Ada certification system.
Office (AJPO) ,

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
validation guidance for operations of the Ada certification system.
Organization '

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

INTRODUCTION

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

1S0
" LRM

Operating
System

Target
Computer
System

Validated ada
Compiler

Validated Ada
Implementation

Validation

" Withdrawn
test

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for which
validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSIMIL-STD-1815A-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>." -

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.
An Ada implementation that has been validated successfully

either by AVF testing or by registration [Pro92].

The process of checking the conformity of an Ada compiler to

the Ada programming language and of issuing a certificate for

this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or contains
erronecus or illegal use of the Ada programming language.

1-4

CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2,1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The ratiocnale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K

, C35507L C35507N C355070 C35507P C€355081 C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C456128 c45612C
C45651A C46022A B49008A B49008B AS4B02A C55B06A
A74006A C74308a B830228 B83022H B830258 B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CCl223Aa BCl226a CCl1226B BC30098B BD1B02B BD1B06A
AD1BOSA BD2A02A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C Cb4024D CD4031A CD4051D
CD5111A ~ CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005SB CDA201E CE21071 CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3l16Aa CE3118A
CE3411B CE34128B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2~1

IMPLEMENTATION DEPENDENCIES

The folliowing 201 tests have floating-point type declarations requiring
more J'gits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)
C35708L..Y (14 tests)
C45241L..Y (14 tests)
C45421L..Y (14 tests)
C45524L..2 (15 tests)
C45641L..Y (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)
C35802L..2 (15 tests)
C45321L..Y (14 tests)
C45521L..2 (15 tests)
C45621L..2 (15 tests)
C46012L..Z (15 tests)

C24113H..K (4 tests) have a line length greater than the maximum allowed
line length of 120 for this implementation.

The following 20 tests check for the predefined type LONG_ INTEGER; for
this implementation, there is no such type:

€35404C C45231C €45304C C45411C c45412C .
€45502C €45503C €45504C C45504F C45611C
€45613C C45614C C45631C C45632C B52004D
CS5B07A B55B09C B86001wW C86006C CD7101F
C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or

SHORT INTEGER; for this implementation, there is no such type.

C35713B, (C45423B, B86001T, and C86006H check for the predefined type
SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses
that specify values for ‘SMALL that are not powers of two or ten; this
implementation does not support such values for ’SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE OVERFLOWS is TRUE.

D64005F..G (2) tests use 10 levels of recursive procedure calls nesting;

this level of nesting for procedure calls exceeds the capacity of the
compiler.

2-2

IMPLEMENTATION DEPENDENCIES

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA3004E..F (2 tests) check that a program will execute when an optional
body of one of its library packages is made obsolete; this
implementation introduces additional dependences of the package

declaration on its body as allowed by LRM 10.3(8), and thus the library
unit is also made obsolete. (See Section 2.3.)

LAS007S..T (2 tests) check that a program cannot execute if a needed
library procedure is made obsolete by the recompilation of a library
unit named in that procedure’s context clause; this implementation
determines that the recompiled unit’s specification did not change, and
so it does not make the dependent procedure obsolete. (See Section
2.3.)

CD1009C checks whether a length clause can specify a non-default sjze
for a floating-point type; this implementation does not support such
sizes.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does not
support decimal ’‘SMALLs. (See section 2.3.)

CD2A8B4A, CD2AS4E, CD2AB4I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

The following 264 tests check operations on sequential, text, and direct
access files; this implementation does not support external files (See
Section 2.3 regarding CE3413B):

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE210SA..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2) _
. CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3l15a CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302a CE3304A CE3305a CE3401A
CE3402a EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411a CE3411C
2-3

IMPLEMENTATION DEPENDENCIES

CE3412a EE3412C CE3413A..C (3) CE3d14A

CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (S)
CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE370SA..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt to
create a file and expect NAME ERROR to be raised; this implementation
does not support external files and so raises USE_ERROR. (See section
2.30)

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 63 tests.

Note: CD2AS1A is subject to two, distinct modifications as described below
(the test name is marked with an asterisk).

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B220052 B24009A B25002A B26005A B44004D B59001E
B73004B B83033B BA1020C BA1020F BA1101C BA2001E
BA3006A BA3013A

C34009D and C34009J were graded passed by Evaluation Modification as directed
by the AVO. These tests check that 'SIZE for a composite type is greater
than or equal to the sum of its components’ ’SIZE values; but this issue is
addressed by AI-00825, which has not been considered; there is not an obvious
interpretation. This implementation represents array components whose length
depends on a discriminant with a default value by implicit pointers into the
heap space; thus, the ’SIZE of such a record type might be less than the sum
of its components ’SIZEs, since the size of the heap space that is used by
the varying-length array components is not counted as part of the ’SIZE of
the record type. These tests were graded passed given that the Report.Result
output was "FAILED" and the only Report.Failed output was "INCORRECT
'BASE’SIZE", from line 195 in C34009D and line 193 in C34009J.

C64104a, CB2006A, CB4002A, and CCl311B were graded passed by Processing
Modification as directed by the AVO. These tests make various checks that
CONSTRAINT ERROR is raised for certain operations when the resultant values
lie outside of the range of the subtype. However, in many of the particular
checks that these tests make, the exception-raising operation may be avoided
as per LRM 11.6(7) by optimization that removes the operation if its only
possible effect is to raise an exception (e.g., an assignment to a variable
that is not later referenced). 1In the list below, beside the name of each
affected test is given the line number of the check that is skipped (with a
relevant associated operation’s line number noted in parenthesis). These
tests were processed both with and without optimization: the tests reported a
passed result without optimization; with optimization, the checks cited below

2-4

IMPLEMENTATION DEPENDENCIES

were skipped and a corresponding call to REPORT.FAILED was made.

C64104A 174 (copy back of parameter value)
CB2006A 36

CB4002A 85 (initialization @ 54)

CC1311B 55 (default parameter value @ 36)

C98001C was graded passed by Processing Modification as directed by the AVO.
This test checks that a non-static arqument to pragma Priority is not
evaluated; it uses the pragma for the main program and within a task unit in
the body of this program. This implementation evaluates the argument when
the pragma appears in a task unit (at line 27) only; this behavior is in
conformity to the draft revised Ada standard (a non-static argqument will be
illegal for a main program). (The AVO allows implementers to adopt Ada9x
rules for Ada83 features so as to encourage the transition to the revised
rules.) The test was processed with and without line 27 being commented out,
and it reported "PASSED" and "FAILED" respectively.

CA3004E..F (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program will execute when an
optional body of one of its library packages is made obsolete. This
implementation, for optimization purposes, compiles all compilation units of
a compilation into a single object module with a single set of control
sections, collectively pooled constants, with improved addressing. As a
consequence, the optional package body of these tests and its corresponding
library unit have a mutual dependence, and thus the library unit is also made
c;bsolgte. This implementation-generated dependence is allowed by LRM
0.3(8).

LAS007S..T (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program cannot execute if a
needed library procedure is made obsolete by the recompilation of a library
unit named in that procedure’s context clause. This implementation
determines that the recompiled unit’s specification did not change, and so it
does not make the dependent procedure obsolete; the program executes, calling
Report.Failed. The AVO ruled that this behavior is acceptable, in light of
the intent for the revised Ada standard to permit such accommodating
recompilation; further deliberation by the AVO and ARG will determine whether
these (and many related) tests will be withdrawn.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures, Length Check
or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA), which use the
generic procedure Unchecked Conversion. This implementation rejects
instantiations of Unchecked Conversion with array types that have non-static
index ranges. The AVO ruled that since this issue was not addressed by

AI-00590, which addresses required support for Unchecked Conversion, and
since AI-00590 is considered not binding under ACVC 1,11, the support
procedures could be modified to remove the use of Unchecked Conversion.
Lines 40..43, 50, and 56..58 in LENCHECK and lines 42, 43, and 58..63 in
ENUMCHEK were commented out.

CD1009A CD10091 CD100SM CD1009Vv CD1009W CD1C03A
CD1C04D CD2A21A..C (CD2A22J CD2A23A..B (CD2A24A CD2A31A..C

2-5

IMPLEMENTATION DEPENDENCIES

*CD2AS1A Cp3014C CD3014F CD3015C CD301SE..F CD3015H
CD3015K CD3022A CD4061A

*CD2AS1A, CD2AS1B, CD2ABS1E, CD2AS3A, CD2AS3B, CD2AB3C, and CD2AB3E were
graded passed by Test Modification as directed by the AVO. These tests check
that operations of an access type are not affected if a ’'SIZE clause is given
for the type; but the standard customization of the ACVC allows only a single
size for access types. This implementation uses a larger size for access
types whose designated object is of type STRING. The tests were modified by
incrementing the specified size $ACC SIZE with '+ 64'.

CD2AS3A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-10 value as 'SMALL for
a fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
'SMALLs may be omitted.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external file.
‘This is acceptable behavior because this implementation does not support
external files (cf. AI-00332).

CE3413B was graded inapplicable by Evaluation Modification as directed by the
AVO. This test includes the expression "COUNT’LAST > 150000", which raises
CONSTRAINT ERROR on the implicit conversion of the integer literal to type
COUNT since COUNT’LAST = 32,767; there is no handler for this exception, so
test execution is terminated. The AVO ruled that this behavior was
acceptable; the AVO ruled that the test be graded inapplicable because it
checks certain file operations and this implementation does not support
external files.

Many of the Class A and Class C (executable) test files were combined into
single procedures ("bundles") by the AVF, according to information supplied
by the customer and quidance from the AVO. This bundling was done in order
to reduce the processing time—compiling, linking, and downloading to the
target. For each test that was bundled, its context clauses for packages
Report and (if present) SYSTEM were commented out, and the modified test was
inserted into the declarative part of a block statement in the bundle. The
general structure of each bundle was:

WITH REPORT, SYSTEM;
PROCEDURE <BUNDLE NAME> IS

— repeated for each test

DECLARE

<TEST FILE> [a modified test is inserted here, ...]
BEGIN

<TEST NAME); {... and invoked here]

EXCEPTION —test is not expected to reach this exception handler
WHEN OTHERS => REPORT.FAILED("unhandled exception ");
REPORT.RESULT;
END;

2-6

IMPLEMENTATION DEPENDENCIES

(... repeated for each test in the bundle]
END <BUNDLE NAME>;

The 1259 tests that were processed in bundles are listed below; each bundle
is delimited by ’'<’ and ’>’.

2-7

<A21001A A22002A A22006B A26004A A26007A A27003A A27004A
A29002A A29002B A29002C A29002D A29002E A29002F A29002G
A29002H A29002I A29002J A29003A A2A031A> <A32203B A32203C
A32203D A33003A A34017C A35101B A35402A A35502Q A35502R
A35710A A35801A A35801B A35801F A35902C A38106D A3Bl06E
A38199A A39005B A39005C A39005D A39005E A39005F> <A39005G
AS4BOLA A54B02A AS5B12A ASS5B13A ASSB14A A62006D A71002A
A71004A A72001A A73001I A73001J A74105B A74106A A74106B
A74106C AT4205E A74205F> <AB3009A A83009B AB3041B AB3041C
. _ AB3041D AS3A02A AB3A02B AS3A06A AB3AOBA A83COLC AB3C01D
AS3COLE AB3COIF A83C01G AS3CO1H A83COLI A83C01J A85007D
AB5013B ASTBS9A> <AB7006A AC1015B AC3106A AC3206A AC3207A>
<ADIAO1A ADI1AOIB ADIDOIE AD7001B AD700SA AD7101A AD7101C
AD7102A AD7103A AD7103C> <AD7104A AD7203B AD7205B> <C23001A
C23003A C23006A C24002A C24002B C€24002C C24003A C24003B
C24003C C24106a C24113A C24113B C24113C C24113D C24113E>
<C24201A C24202A C24202B €24202C C24203A C24203B C24207Aa
C24211A C25001A C25001B C25003a C25004A C26002B C26006A>
<C26008A C27001A C2A001A C2A001B C2A001C C2A002A C2A006A
C2M008A C2A0092 C2A021B> <C32107A C€32107C C32108A (C32108B
C32111A C32111B> <C32114A C32115a (C32115B> <C32117A C34001A
C34001C C34001D C34001F C34002A C€34002C C34003A €34003C>
<C34004A C34004C C34005A C€34005C> <C34005D C34005F C34005G
C34005I> <C34005J C34005L C34005M C€340050> <C34005P C34005R
C34005S C34005U C34006A C34006F C34006G C34006J> <C34006L
C34007A C34007D C34007F C34007G> <C34007I C€340073 C34007M
C34007P> <C34007R C34007S> <C34009A C34009F C34009G C34009L
C34011B C34012A C34014A C34014C> <C34014E C34014G C34014H
C34014J C34014L C34014N C34014P C34014R C34014T> <C34014U
C34014w C34014Y C34015B C34016B C34018A C35003A C35003B
C35003D C35003F C35102A C35106A C35404A> <C35503A C35503B .
C35503C C35503D C35503E C35503F C€35503G C35503H C35503K>
<C35503L C355030 (C35503P C35504A C€35504B (€35505A C35505B
C35505C> <C35505D C35505E C35505F C€35507A C€35507B> <C35507C
C35507E C35507G C35507H C€355071 €35507J> <C35507k C35507L>
<C35706A (C35706B C35706C C35706D C35706E> <C35707A C35707B
€35707C .C35707D C35707E C35708A C€35708B (C35708C C35708D
C35708E> <C35711A C35711B C€35712a C35712B C35712C C35713A
C35713C> <C35801D C35802A (C35802B C35802C C35802D C35802E>
<C35902A C35902B C35902D C35904A C35904B C35A02A C35A03A
C35A03B C35A03C C35A03D> <C35A03N C35A030 C35A03P> <C35A03Q
C35A04A C35A04B C35A04C> <C35a04D C35A04N> <C35A040 C35A04P>
<C35A04Q C35A05A C35A05D C35A05N> <C35A05Q C35A06A C35A06B>
<C35A06D C35A06N C35A060> <C35a06P C35A06Q C35A06R C35A06S
C35A07A C35A07B C35A07C> <C35a07D C35A07N C35A070 C35A07P
C35A07Q C35A08B C36003A> <C36004A C36104A C36104B C36105B

IMPLEMENTATION DEPENDENCIES

C36172A C36172B C36172C> <C36174A C36180A C36202A C36202B
C36202C C36203A (C36204A C36204B C36204C> <C36205A C36205B
C36205C C36205D C36205E C36205F (C36205G C36205H> <C362051
C36205J C36205K C36301A C36301B C36302A C36303A C36304A
C36305A> <C37002A C37003A C37003B C37005A C37006A C37007A
C37008A C37008B> <C37008C C37009A C37010A C37010B C37012A
C37102B C37103A C37105A C37107A C37108B C37206A C37207A
C37208A C37208B C37209A C37209B C37210A> <C37211A C37211B
C37211C C37211D C37211E C37213A C37213B C37213C (C37213D»
<C37213E C37213F (C37213G C37213H> <C372133 C37213K C37213L
C37214A> <C37215A C37215B> <C37215C (C€37215D C37215E C37215F
C37215G C37215H C37216A C37217A C37217B C37217C> <C37304A
C37305A C37306A C37307A C37309A C37310A C37312A (C37402A
C37403A> <C37404A C37404B C37405A C37409A C37411A (C38002A
C38002B C38004A (C38004B C38005A C38005B (C38005C C38006A
C38102A C38102B (38102C (€38102D C38102E C38104A (C38107A
C38107B> <C38108A C38201A C38202A C39006A C39006B C39006D
C39006E C39006G C39007A C39007B C39008A C39008B C39008C>
<C41101D C41103A C41103B C41104A C41105A C41106A C41107A
C41108A C41201D C41203A C41203B> <C41204A C41205A C41206A
C41207A C41301A C41303A C41303B C41303C C41303E C41303F
C41303G C413031 (413037 C41303K C41303M C41303N C€413030
C41303Q0 C41303R C41303s C41303U C41303v C41303w C41304A>
<C41304B C41306A C41306B C41306C C41307A C41307C C41307D
C41308A C41308C C41308D C41309A> <C41320A C41321A C41322a
C41323A C41324a C41325A C41326A C41327A C41328A> <C41401A
C41402A C41403A C41404A C42005A C42006A C42007A C42007B>
<C42007C C42007D C42007E C42007F C42007G C42007H C42007I>
<C42007J C42007K C43003A C43004B C43103A C43103B C43104A>
<C43105A C43105B C43106A C43107A C43108A C43204A C43204C
C43204E C43204F> <C43204G C43204H C432041 C43205A C43205B
C43205C C43205D C43205E C43205F C43205G C43205H (432051
C432053 C43205K C43206A C43207A C43207B C43207C> <C43207D
C43208A C43208B (C43209A C43210A C43211A C43212A (C43212C
C43213A> <C43214A C43214B C43214C C43214D C43214E C43214F
C43215A C43215B C43222A> <C43224A C44003A C44003D C44003E
C44003F C44003G C45101A C45101B C45101C C45101E C45101G
C45101H C45101I C45101K (C45104A C45111Aa C45111B C45111C>
<C45111D C45111E C45112A C45112B C45113A> <C45114B C45122a
C45122B C45122C (C45122D C45123A C45123B C45123C> <C45201A
C45201B C45202A C45202B C45210A C45211A C45220A (C45220B
C45220C C45220D C45220E C45220F C45231A> <C45232a C45232B
C45241A C45241B C45241C C45241D C45241E> <C45242A C45242B
C45251A C45252A C45252B C45253A C45262R> <C45272A C45273A
C45274A C45274B C45274C C45281A C45282A (C45282B C45291A
C45303A C45304A> <C45321A C45321B C45321C (C45321D C45321E>
<C45323A C45331A C45331D C45332A C45342A C45343A C45344A
C45345A C45345B C45345C C45345D> <C45347A C45347B C45347C
C45347D C45411A C45411D C45412A> <C45413A C45421A C45421B
C45421C C45421D C45421E> <C45423A C45431A C45502a C45503A>
<C45504A C45504D> <C45505A C45521A C45521B C45521C C45521D
C45521E> <C45523A C45524A C45524B C45524C C45524D C45524E>
<C45532A C45532B C45532C €45532D C45532E C45532F C45532G
C45532H C455321 (455323 C45532K C45532L> <C45534A C45611A

2-8

IMPLEMENTATION DEPENDENCIES

C45613A C45614A C45621A C45621B C45621C
<C45622A C45624A C45624B C4S5631A C45632A
C45641C C45641D C45641E> CA45652A C45662A
C46011A C46012A C46012B C46012C> <C46012D
C46014A C46021A C46023A C46024A C46031A
<C46041A C46042n C46043A C46043B> <C46044A
C46051B C46051C> <C46052A C46053A C46054A
C47002C C47002D C47003A C47004A C47005A
<C47008A C47009A C470098B C48004A C48004B
C48004E C48004F C48005A C48005B C48005C
<C48007A C48007B C48007C C48008A C48008B
C48009A C48009B C48009C C48009D C48009E
<C48009H C480091 C480093 C48010A C48011A
C49021A C49022A C49022B C49022C C49023A
C49026A> <C4AO005A C4A005B C4AO006A C4A007A
C4A010D C4A011A C4A012A C4A012B C4AQ13A
<C51002A CS51004A C52001A C52001B C52001C
C52005C (€52005D CS52005E C52005F> <C52007A
€520092 C52009B C52010A C52011a C52011B
€52013A> <C52103B €52103C C52103F C52103G
C52103L> <C52103M C52103P C52103Q C52103R
C52104A (C52104B C52104C CS52104F> <C52104G
C52104L C52104M C52104P C52104Q C52104R
<C53004B CS53005A C53005B CS53006Aa C53006B
C54A03A C54A04A C54A06A C54A07A C54AllA
C54A13C> <C54A13D CS54A22A C54A23a C54A24A
C54A27A C54Ad41A C54Aa42A CS54A42B C54AdaC
C54A42F C54A42G C55BO3A C55B04A C55BOSA
<CS5BOBA CS55B09A CSSB10A CS55Blla CS55B11B
C55C01A C55C02A C55C02B CS55C03A CS55C03B
C57002A C57003A C57004A C57004B C57004C
C58004B (C€58004C C58004D CS8004F C58004G
C58005H (C58006A C58006B C59001B C59002A
<C61008A C61009A C61010A C62002A C62003A
C62006A C62009A C63004A C64002B> <C64004G
C64005C C64103A C64103B C64103C C64103D
<C64104a C64104B C64104C C64104D C64104E
C64104H (641041 C641043 C64104K C64104L
C641040 C64105A C64105B C64105C C64105D
<C64106A C64106B C64106C C64106D C64107A
C64109B (C64109C C64109D C64109E> <C64109F
C64109I 641093 C64109K C64109L> <C64201B
C65003A> <C65003B C65004A C66002A C66002C
C66002F (C€66002G C67002A C67002B C67002C
<C67003A C67003B C67003C C67003D C67003E
C67005C C67005D> <C72001B C72002a C73002A
C74203A C74206A C74207B C74208A C74208B
C74211A C74211B C74302Aa C74302B C74305A
C74307A> <C74401D C74401E C74401K C74401Q
C74406A C74407B C74409B> <C83007A C83012D
C83024A C83025A> <C83027A C83027C C83028A
<C83031A €83031C CB83031E (€83032a (C83033A
C83B02B CB83E02A CB3E02B CB3EO3A CB3E04A
C84002A CB84005A C84008A CB4009A C85004B

2-9

€45621D C45621E>
C45641A C45641B
C45662B C45672A
C46012E> <C46013A
Cc46032a C46033n>
C46044B C46051Aa
€47002a C47002B
Cc47006A C47007A>
C48004C C48004D
C48006A C48006B>
C48008C C48008D
C48009F C48009G>
C48012A C49020Aa
C49024A C49025A
C4A010A C4a010B
C4n013B C4a0l4A>
€52005A C52005B
Cc52008A C52008B
C52012A C52012B
C52103H C52103K
€52103s C52103xX
C52104H C52104K
C52104X C52104Y>
C53007A CS3008A
C54Al13A C54al3B
C54A24B CS54A26A
C54Ad42D CS4A42E
CS5B06A CS5B06B>
CS5B1SA CS55Bl6A
C55D01A C56002A
C57005A> <CS58004A
C58005A C58005B
C59002B C59002C>
C62003B C62004A
C64005A C64005B
C64103E C64103F>
C64104F C64104G
C64104M C64104N
C64105E C64105F>
C64108A C64109A
C64109G C64109H
C64201C C64202a
C66002D C66002E
C67002D C67002E>
C67005A C67005B
C73007A C74004A
C74209A C74210A
C74305B C74306A
C74402n C74402B
€83022a €83023A
€83029a C83030A>
C83051A C83B02A
C83F01A CB83F03A
C85005A €85005B

IMPLEMENTATION DEPENDENCIES

C85005C CB85005D> <C85005E C85005F (850056 CBS006A> <C85006F
C85006G> <CB87AOSA C87AO5B CB87B02A C87BO2B C87BO3A C87B0O4A
C87B04B C87B04C C87BO5A C87BO6A CB87BO7A C87BO7B> <C87B07C
Cc87B07D CB87BOTE C87B0S8A C87B09A CB7B09B CB7BOSC C87B10A
C87B11A C87B11B C87B13A C87Bl4A C87Bl14B CB7B14C C87B14D>
<C87B1SA C87Bl16A C87B17A C87B18A (C87B18B CBTB1IA C87B23A
C87B24A> <C87B24B CB87B26B CB7B27A C87B28A CB7B29A C87B30A
C87B31A C87B32A> <CB1001A CB1002A CB1003A CBl0O4A CB100SA
CB1010A CB1010B (CB1010C CB1010D> <CB2004A CB20035A CB2006A
CB2007A CB3003A CB3003B> <CB3004A CB4001A CB4002A CB4003A
CB4004A CB400SA CB4006A CB4007A CB400BA CB4009A CB4013A
CBS002A CB7003A CB7005A> <CC1004a CC1005C CClO10A> <CC1010B
CCl018A CC1104C CC1107B CClllla CCl204A CCl12078 CC1220A
CCl1221A CCl221B (CCl221C CC1221D> <CC1222A CCl224A CC1225A>
<CC1304A CC1304B CC1l305B CC1307A CC1307B CCL308A CC1310A>
<CC1311A CC1311B CC2002A CC3004A CC3007A CC3011A CC3011D
CC3012A CC3015A CC3106B> <CC3120A CC3120B CC3121A CC3l23a
CC3123B CC3125A (CC3125B CC3125C CC3125D> <CC3126A CC3127A
CC3128A CC3203A CC3207B CC3208A CC3208B> <CC3208C CC3220A
CC3221A CC3222A CC3223A CC3224A CC3225A> <CC3230A CC3231Aa
CC3232A CC3233A CC3234A CC3235A CC3236A CC3240A CC3305A
CC3305B CC3305C CC3305D CC3406A CC3406B CC3406C CC3406D
CC3407A CC3407B CC3407C CC3407D CC3407E CC3407F> <CC3408A
CC3408B CC3408C CC3408D CC3504A CC3504B CC3504C CC3504D
CC3504E CC3504F> <CC3504G CC3504H CC35041 CC3504J CC3504K>
CC3601C> <CC3603A CC3606A CC3606B CC3607B>

<CC3601A

2~10

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Robert R. Risinger

TLD Systems Ltd.

3625 Del Amo Boulevard
Torrance California 90503
(310) 542-5433

Testing of this Ada implementation was conducted at the customer’s site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation’s maximum precision (item e; see
section 2.2), and those that depend on the support of a file system — if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and £, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3534

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 67
d) Non-Processed I/0 Tests 264
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 532 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

" After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as-
appropriate. The executable images were transferred to the target computer
system by the Serial Ports, and run. The results were captured on the host
computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The following options were used for testing this
implementation:

Compiler

Option / Switch Effect

NoPhase Suppress displaying of phase times during
compilation.

Nol.og To cause command line to be echoed on log
file.

NoDebug To suppress generation of debug symbols to
speed compilation and linking.

List To cause listing file to be generated.

Target=i960 : Selects the TLD Intel i960 target
architecture.
3-2

PROCESSING INFORMATION

Linker

Option / Switch Effect

NoDebug Suppresses generation of Debugger symbol
files.

NoVersion Suppresses announcement banners that

contain timestamp and version information
to facilitate file comparing.

All tests were executed with Code Straightening, Global
Optimizations, and automatic Inlining options enabled. Wwhere
optimizations are detected by the optimizer that represent deletion
of test code resulting from unreachable paths, deleteable
assignments, or relational tautologies or contradictions, such
optimizations are reflected by informational or warning diagnostics
in the compilation listings.

Test output, compiler and linker 1listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximm input-line length, which is
the value for SMAX IN LEN-—also listed here. These values are expressed here
as Ada string aggregates, where “V" represents the maximum input-line length.

Macro Parameter

Macro Value

$MAX IN LEN
$BIG_ID1
$BIG_ID2
$BIG_ID3

$BIG_ID4

$BIG_INT LIT
$BIG_REAL LIT
$BIG_STRINGL
$BIG_STRING2
$BLANKS

120 — value of V
(1..v=1 => 'A’, V => '1’)
(1..V=1 => 'A’, V=) 727)

(l..v2 = 'A’) & '3’ &
(1..v=1-v/2 => 'a’)

(1..Vv/2 => 'A’) & "4’ &
(1..v-1-V/2 => 'A’)

(1..v-3 => 70’) & "298"

(1..v-5 => *0’) & "690.0"

& (1..V/2 => 'A’) & '™

™ og& (1..V-1-v/2 => 'A’) & '1’' & rne

(1..V=20 => *)

$MAX_LEN INT BASED LITERAL

"2:" & (1..v-5 => ’0") & "11:"

$MAX_LEN REAL BASED LITERAL

"16:" & (1..Vv-7 => '0’) & "F.E:"

A-1

MACRO PARAMETERS
$MAX STRING LITERAL

The following table lists all
respective values.

tnr & (1..V‘2 -> 'A') & rne

of the other macro parameters and their

Macro Parameter Macro Value
$ACC_SIZE 32
SALIGNMENT 4
$COUNT_LAST 511
$DEFAULT MEM SIZE 16#400000004
$DEFAULT STOR UNIT 8 .
$DEFAULT_SYS_NAME 1960
$DELTA DOC 2.0%*(-31)
$ENTRY_ADDRESS 15
$ENTRY_ADDRESS1 17
SENTRY ADDRESS2 19
$FIELD LAST 127
$FILE TERMINATOR ASCII.FS

SFIXED NAME
$SFLOAT NAME
$FORM_STRING
$FORM_STRING2

NO_SUCH_FIXED TYPE
NO_SUCH_FLOAT TYPE

CANNOT RESTRICT FILE CAPACITY

S$GREATER THAN DURATION

90000.0

$GREATER THAN DURATION BASE LAST

131073.0

$GREATER THAN FLOAT BASE LAST

3.41000E+38

SGREATER_THAN FLOAT SAFE LARGE

2.73000E+37

A=2

MACRO PARAMETERS

$GREATER THAN SHORT FLOAT SAFE LARGE
- NO_SUCH SHORT FLOAT TYPE

$HIGH_PRIORITY 20

SILLEGAL EXTERNAL FILE NAME1
"BADCHAR@. ! "

SILLEGAL EXTERNAL FILE NAME2
“THISFILENAMEWOULDBEPERFECTLYLEGAL" &

" IF I TWERENOTSOLONG . SOTHERE"
$INAPPROPRIATE LINE LENGTH

-1
SINAPPROPRIATE PAGE LENGTH

-1
$INCLUDE_PRAGMAL PRAGMA INCLUDE ("“A28006D1.TST")
SINCLUDE PRAGMA2 PRAGMA INCLUDE ("B28006F1.TST")
$INTEGER FIRST -2147483648
$INTEGER LAST 2147483647

SINTEGER LAST PLUS 1 2147483648
SINTERFACE LANGUAGE ASSEMBLY
SLESS_THAN DURATION -90000.0

$LESS_THAN DURATION BASE FIRST
-131073.0

SLINE_TERMINATOR ACSII.CR
$LOW_PRIORITY 1

$MACHINE CODE_STATEMENT
CIRL' (B, 1, True)

$MACHINE CODE TYPE CTRL

$MANTISSA DOC 31

$MAX DIGITS 15

$MAX INT 2147483647

$MAX INT PLUS_1 2147483648

$MIN INT -2_147_483_648
A~3

MACRO PARAMETERS

$NAME_LIST

SNAME_SPECIFICATION]
$NAME_SPECIFICATION2
$NAME_SPECIFICATION3
$NEG_BASED INT
$NEW MEM SIZE
$NEW_STOR _UNIT
$NEW_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
SRECORD_NAME

$TASK SIZE
$TASK_STORAGE SIZE
$TICK

SVARIABLE ADDRESS
$VARIABLE ADDRESS1
SVARIABLE ADDRESS2
$YOUR PRAGMA

NO_SUCH_INTEGER_TYPE

Pmachine, ns16000, vax, afl750 28002, z8001,
gould, pdpll, m68000, pe3200, caps, amdahl,
i8086, 180286, 180386, 280000, ns32000,
ibmsl, m68020, nebula, name x, hp, bbl,
hawk, rl666, i960

Not supported

Not supported

Not supported

164FFFFFFFE$

164100000004

8

i960

ACSII.CR & ASCII.FF

Withdrawn

Withdrawn

32

2000

0.000001

SYSTEM."-"(1647FFFFFF44#)
SYSTEM."-" (164 7FFFFFECH)
SYSTEM."-"(1647FFFFFES#)

Withdrawn

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,

references in this appendix are to compiler documentation and not to this
Teport.

B-1

TLD ADA COMPILER IQGO-A?A-ZE

CompiLER UsaGE

3.4 CoMmpILER OPTION SWITCHES

Compiler option switches provide control over various processing and
output features of the compiler. These features include several
varieties of listing output, the level and kinds of optimiszations
desired, the choice of target computer, and the operation of the
compiler in a syntax checking mods only. :

Keywords are used for selecting various compiler options. The
complement keyword, if it exists, is used to disable a compiler option
and is formed by prefixing the switch keyword with "NO".

Switch names may be truncated to the least nmumber of characters
required to uniquely identify the switch. For example, the switch
- . "CROSSREF" (explained in the list below) may be uniquely identified by
the abbreviation "CR" or any longer abbreviation. In the 1list of
svitches on the following pages, the abbreviations are in bold and the
opticnal extra characters are not bolded.

If an option is not specified by the user, a default setting is
assumed. RAll specified compiler options apply te a single invocation
of the compiler.

The dafault setting of a switch and its meaning are defined in the
table below. The meaning of the complement form of a switch is
normally the negation of the switch. For same switches, the complement
meaning is not obvious; these complement switch keywords are listed
separately.

In the description of the switches, the target dependent name target is
used. The value of this symbol is determined by the value of the
TARGET switch.

Compiler-generated f£ile specifications generally conform to host
conventions. Thus, any generated <filename is the socurce Zfilename
appended with the default file type. The output file name can be
completely or partially specified.

.%amuru

TLD ADA COMPILER I960-A9A-2(9:

CompILER USAGE

SWITCH NAME MEANING

ADpRess_spACE=name| (name, subsyscem_name)
NOADpress_spacs -- default

This switch allows users to specify the association of a
compilation unit with a logical address spacs. This capability
will support the definition of i960 Extended Architecture "Damains*®
and domain calls. :

The oname parameter is the name of the address spacs and
subsystem-name is the name of the subsystem to which the address
space belongs. If subsystem-name is not supplied, then the address
space does not belong to a subsystem. This switch may appear in
any compilation, and applies to all the compilation units in the
coampilation. .

FOTE: An alternate method of associating compilation unit(s) with
a logical address space is to use the pragma Address_Space in the
compilation unit(s) and compile without using this switch. The
pragma Address_Space_Entry is used to indicate which subprograms
Tepresent entities into the logical space (defined by this switch
or pragma Address_Space). Refer Section 5.2.F of this document
under Implementaticn-Dependant Pragmas, for further information.

This capability does not yet allow users to indicate objects that
are to be implemented and referenced as independent cbjects.

TIDInk will verify that all compilation units in the link have an
address space attribute of the same value, or have no address space
ateribute and will create either a domain (if an address attribute
is specified) or a program (if no address space attribute is
specified) .

AlDaadb-filename
NOAIp -- default

This switch causes information collected during compilation to be
saved in a specified data base Zfile or a default £ile named
I960.ADB in the compilation directory. This information includes
the compilation units, the contained scopes, the local declarations
of objects and types and their descriptions, externmal references,
callers, calls, program design language (PDL) which is extracted
from stylized Ada comments embedded in the socurce code, and any
other information extracted from similar stylized Ada comments.
The T1D Ada Info Display (TlDaid) permits the user to browse this
data base and to extract selected data base informaticn to Suppoxt
the understanding of a progzam oOr to produce documentation
describing the program.

Lk > AN

TLD ADA COMPILER I960-A?A-§g

CompILER USaGE

CArL TRz
NOCAiL_TrEs -- default

This switch is used in conjunction with ELABORATOR and
cause all .CTI files (corresponding to the complete set of
files being linked for this progzam) to be read in and a closure of
all calls in the program tO be computed. The results of this
analysis is formatted into a subprogram call tree report and cutput
in the listing ¢file. This switch has no effect without the
EILABORATOR and LIST switches.

LIST to
odject

NOTE: The call tree is incomplete if any required compilation
unit’s .CTI f£iles are missing.

CHecxs -- detault *
. CHzcxs({=(check_identifier{,...))}
NOCHzcxs (= (check_identifier(,...})}

¥When the CHECKS switch is used, zero or more check_identifiers are
specified and the run time checks are enabled. The status of zrun
time checks associated with unmenticned check_identifiers is
unchanged.

without any check_ideacifiers, the NOCHECKS switch cmits all run
time checks. If one or more check_identifiers are specified, the
specified run time checks are omitted. The status of run time
checks associated with unmentioned check_identifiers is unchanged.

Checks can be eliminated selectively or completely by source
statement pragma Suppress. Pragma Suppress overrides the CHECKS
switch.

Check_identifiers are listed belowv and are described in the LRM,
Section 5.2.B.

ALL_CHECKS -- default (consists of all the checks below)

ACCESS_CHECK DISCRIMINANT CHECK DIVISION_CHECK
ELABORATION CHECK INDEX_CHECK LENGTH_CHECK

OVERFLOW_CHECK RANGE_CHECK A STORAGE_CHECK

TLD ADA COMPILER I960-AI3M-§

CompzILER UsagE

cmhlr-chncm-mciﬁﬁ:im(A

This switch allows the user to override a set of dafault msta
characters used to mark cooments wvhich have special msanings to the
Compiler. (In the source code, these meta CHATACTeIXS must
immediately follow the Ada comment designator "--*.) There are 13
meta characters defined as positional entries in the string of
characters specified for this switch. 7To dsfine one Or more
enctries, all entries up to and including ths last entry to be
defined must be specified. Bach of these characters may be
represented either by the character itself, or by a dollar sign *$*
followed by the character’s decimal ascii valus. (The latter form
is useful Zor specifying characters which would otherwise be
significant to the command line parser.) To specify a dollar sign
character, use the form °*$36". Remaining character positions are
left unchanged. Capabilities for character positions in the string
may be disabled by specifying either blank ("$32°) or null ("$0").
Please refer to the ascii character set table in Appendix B for the
decimal wvalue of ascii characters. The definition of each entry
and its current default value is as follows:

Rosition Deacxioticn
‘ 1 Configuration Equals (Gafault: "=")
This entry defines the character used to mark
conditicnal source lines which will be included in
the campilation only it its

configuration-identifier is specified with the
CONFIGURATION switch.

2 Configuration Not Rqual {dafault: "#")

This entry defines the character used to mark
conditional source lines which will be included in
the compilation caly if ics
configuration-identifier is got specified with the
CONFIGURATION switch. This same character is used
te begin an "else"™ clause within a group of
conditional compilation lines. The lines between
this character and the end of the group will be
included in the <compilation only if the
configuraticn-identifier for the group is gt
specified with the CONFIGURATION switch.

3 Begin Configuration (degault: *(")
This entry defines the character used to mark the
beginning of a group of conditional compilation
source lines.

Lk > A

TLD ADA COMPILER 1960-ADA-2C

ILER Usage

See the

End Configuration (default: *}*)
This entry defines the character used to mark the
end of a group of conditional compilation source
lines.

CONFIGURATION command lins option for more informatiom on

conditional compilation.

Souxce Reformatting Comment CHAXACLSIS

Roaition

Resczintion

Continuation Line (default: *&*)
This entry defines the character used to mazk a
comment continued from the previous lins and “for

vhichmdmmgxlm:tomdm.mm
reformatting.

Reserved for future use.
Raserved for future use.

IlDaid Commpent CRAXacters

10

b §

Resczintion
Begin Topic (default: *"[")

This entry defines the character used to mark the

beginning of text associated with a topic name.

End Topic (default: "]")
This entry dafines the character used to mark the
end of text associated with a topic name.

Define Topic (dsfault: "e")
This entxry defines the character used to mark the
definition of a comment meta character for a
particular user-dsfined topic name. This character
may subsequently Dbe used as a shorthand for the
above method, eliminating the nesd to specify the
topic name at each occurrence.

Description (defaulc: *:°*)
This entyy defines the character used to mark a
coamment as a desscription associated with the
previous declaration. .

Li - B

TLD ADA COMPILER IQSO-A?A-%C

CompiLER UsacE

12 PDL (default: *"|*)
This entry defines the character used to mark a

comment as Program Design Language (FDL) .

13 Cozzanand (dafault: *$*)

This entry defines the character used to mark a
coumnent as a command to control data collection.
This entry provides a machanism £or users to
maintain compatibility batween ths oew
implementation and previcusly commented source. It
also may be used to provide a degres of
compatibility with tools similar to TiDaid.

Sese the Rsfersnce Documant for _the TID UQtilities for more

information on TiDaid.
CONFIGURATIONS{ () configuraticn-identifier{,...}{)}

vhere the parenthesis () are required only when more than one
configuration-identifier is specified.

This switch provides a conditional compilation (configuratiom)
capability by determining the specially cocmmented source lines that
are to be included in the compilation. Source 1lines(s) can be
associated with a configuration-identifier which if supplied with
this switch, causes them to be included. Also, alternative source
line(s) can be specially marked to be included if the
configuration-idencifier is not supplied.

Fozrmat

Mark Source Line(s) Individually:
--sconfiguration-idencifier conditional - source-line
or:
--$configuracion-identifier conditicnal -source-line

The above format is :opuudto:otchmlm to be marked as a
conditicnal source line.

Source line(s) beginning with "--=" are included in the compilation
if cthe configuration-idencifier is specified with the command line
CONFIGURATION switch. Source 1line(s) beginning with "--#" are
included in the compilation if the configuraticn-identifier is gt
specified with the command line CONFIGURATION switch (CONFIGURATION
is not used or is used without that configuration-identifier).

g e o

TLD ADA COMPILER I960-A13)A-§2

ILER Usage

Mark a Group of Source Lines:

--{configuration-identifier

condicicnal -source-line-1 }

. } Compiled if

} configuration-identifier

. } ia specified with this
conditional -source-line-an } switeh
Yy | :
alt-conditional -source-line-1 }

. } Compiled if

. } configuracion-identifier

- . } is pot specified with this

alt-conditional -source-line-n } switeh.

- --}configuration-identifier

Source line(s) between lines beginning with "--{" and "--#" are
included in the compilation if the configuration-idencifier is
specified with the command line CONFIGURATION switch. Sourcs
line(s) between lines beginning with *"--4* and *"--}" are included
in the compilation if the configuration-idencifier is Qo specified

» with the command line CONFIGURATION switch (CONFIGURATION is not
used or is used without that configuration-identifier).

Notes on Svatax

Comments are examined for configuration switches only if they
occupy a2 line by themselves (i.e., the "--" gtarts at the first
non-blank character of the line.

The special cooment characters "--=*, *--#°, *--{*, and "--}* gust
be entered as shown with no spaces between them.

The characters "=", "#°, "(", and "}" are the default meta
characters for configuration switches, but they can be modified.
See the COMMENT command line option for more informationm.

The cen;fiyun:iu:-idm:itic must immediately follow the special
commnent Characters; no Space is allowed between them.

The ccnfigun:ian-idaa:iﬁoz on the closing brace *--}* is
opticnal, but if specified must match the identifier on the
corresponding cpening brace *--(".

‘ ﬂmmuﬂa

TLD ADA COMPILER IQGO-A?A-%SC

ComrILER UsaGce

The "--#" has ons or the other of two distinct meanings: 1) if
followed by a configuration-identifier, it means °*compile the
balance of this line conditionally® and 2) if no identifier
follows, it means °toggle the sense of the innermost configuration
brace*®. .

Any additional text on the same line as the
*--{configuration-identifier” and/oxr the "--}
configuration-identifier” will be comsidered a comment and will got
be compiled as Ada source, regardless of the configuration

»“ttiﬂgl.

Naxning Constraint

By default, a /CONFIG=I9€0 setting is created for the target
canputer and model (by the /TARGET and the /MODEL Compiler
switches). Therefore, I960 is not a valid configuration-idencifier -
for conditicnal compilation. If used, conditional source with that
name will always be included in the compilation whether or not this
switch is specified (since that name is already specified for the
target and model, by default).

(Nesting

The compiler treats nested conditional source in a manner similar
to nested "if" statements. It checks the configuration-identifier
to determine if it has been specified with the CONFIGURATION switch
(similar to the checking performed to determine whether an °*if*
statement is to be performed). If so, it selects the source marked
with that configuration-identifier (just as an "if" statement is
performed for a "True” "if" condition). If not and altsrnatse
conditicnal socurce exists, it selects the alternate source for that
configuration-idencifier marked with "--#* (just as an “else®
statement is performed for a "False" "if* condition). It centinues
this checking for every nested configuration-identifier it
sncounters.

g merma

TLD ADA COMPILER 1960-ADA-2C
ComrzLER UsacE 3 -16

For example:
--{a
canditicoal -source-line-Al }
. } Compiled if A is
} specified with
. } this switch.
conditicoal-source-line-An }
--#
alt-conditicnal -source-line-Al }
. } Compiled if A is pot
} specified with
. } cthis switch.
alt-conditicoal -source-line-An }
..{’
conditional -source-line-B1 }
. .)} Compiled if A is pot
. } and B jig specified
. } with this switch.
conditional - source-line-Bn }
--#
alt-condicional -source-line-B1 }
. } Compiled if A and B axe
} oot specified with
. } this switch.
alt-conditicnal -source-line-Bn }
--{¢
conditional -source-line-C2 }
. } Compiled if A and B are
. } oot and C ig specified
. } with this switch.
conditiocnal -source-line-Cn }
--#
alt_conditional - source-line-Cl }
. } Compiled if A, B, and C
. } are got specified with
. } this switeh.
alt-conditional - source-line-Ca }
--}c
-«}B

Configuration switches are examined and must be properly nested
regardless of whether or not the configuraticn-identifiers are
specified.

TLD ADA COMPILER IQGO-AIBJA-%

ILER UsagE

The following example format is invalid, since *B* is not
completely nested within "A°:

At the close of "A", the nested "B will be forced closed vith the
warning message: °“Missing configuration comment: --}B". By the
time "--}B" is reached, "B" will have already been closed, so the
following warning will be issued: “*Unmatched configuratiom
comment: --}B*.

NOCRosszxr -- default

This switch generates a cross refersnce listing that contains names
referenced in the source code. The cross refersnce listing is
included in the listing file; therefore, the LIST switch must be
cT selected or CROSSREF has no effect.
I
NOCTz -- default

This switch generates a CASE tools interface f£ile. The default

(filename is derived Zfrom the object filenams, with a .CTT
extension. The .CTI <£ile is required to support the CALL TRER,
FULL_CALL_TREE, and INVERTED_CALL TRER switches.

DEBug -- default
NODEBws

This switch selects the production of symbolic debug tables in the
zralocatable object file.

Alternate abbreviationm: DBG, NODBc

DIagmosTzCS
NODIxssosTICS -- default

This switch produces a diagnostic message file compatible with
Digital’s Language Sensitive BEditor and XinoTech EBaitor. See
Digital‘s documentation for the Language Sensitive Editor for a
detailed explanation of the file produced by this switch.

TLD ADA COMPILER IQGO-A?A-%E

CompiLER UsaGE

ELascraTor
NOELasoraToR -- default

This switch generates a setup program (in unit-pameSELAB.OSJ (and a
listing file in uniz.oameSELAB.LIS if the LIST switch was
specified)) that elaborates all compilation units om which the
specified library unit procedure (main program) depends and then
calls the procedure (main program). When the ELABORATOR switch is
used, The unit name of a previcusly compiled procedurs must be
specified instead of a source file. It is not necessary to
distinguish a main program from a library unit wvhen it is compiled.

Forr_cawi_trex
'NOFozi_cALL_TRES -- default

¥When the FULL CALL TREE switch is used, the compiler listing
includes all calls including all nested calls in every call. The
NOFULL_CALL TREE switch shows all nested calls in the first
instance cnly and all subsequent calls ars referred to the <first
instance. This switch has no effect without the ELABORATOR and
LIST switches.

INDENTATION=a
INDExTATION=3 -- default

This switch controls the indentation width in a reformatted source
listing (see the REFORMAT switch descriptiom). This switch assigns
a value to the number of colummns used in indentation; the value 1
can range from 1 to 8.

INFo -- default
NOINFo

The INFO switch produces all diagnostic messages including
information-level diagnostic messages. The NOINFO switch
suppresses the production of information-level diagnostic messages
only.

INSTANTIATE=OpLicn
NOINSTANTIATE -- default

This switch is used to establish a default mods of instantiation
for all generic instantiations within the compilation.

The option parameter instructs the Compiler to instantiate generics
in the manner specified, as described below:

single_body - a single body is used for all instantiaticns

macro - each instantiation produces a different body

e e e

S,

TLD ADA COMPILER 1960-ADA-2C
Comr 3-19

ILER UsaGe

Please refer to Section 3.12 "Generics® for more information om the
advantages and disadvantages in using single_body genarics versus
BACYO generics.

Nested instantiations and nested generics are supported and
generics defined in library units are permitted.

It is Dot possible to perform a macro instantiation for a generic
whose body has not yst been compiled.

NOTE: An alternate method of controlling macyo instantiation of
& generic is by using pragma Instantiate in the socurce code and
performing compilation without this switech. The pragma coutrols
instantiation of a particular generic. Refer to Section 5.2.F of
this document under Implementation-Dependent Pragmas, for further
information.

In the event of a conflict between the pragma and this switch,
the switch takes precedencs.

INTs1L
NOINTsy -- default

PR
- T — —— — ST Sa— — I T — — —— S—— S— Y— S— t— —

This swvitch intersperses lines of source code with the assembly
cods gensrated in the macro listing. This switch is valid only if
the LIST and MACRO switches are sslected. It may be helpful in
corrslating Ada sourcs to generated code, but it increases the sisze
of the listing file.

INVERTED_CALL_TRER
NOINVzRTED_CALL TREE -- default

This switch determines which calls led to the present one. A
reversed order call tree is generated. This switch has noc effect
without the ELABORATOR and LIST switches.

LIST{a1isting-£ile-spec)
NOLIST -- aefault in interactive mode
-- default for background processes

This switch generates a listing file. The default filename is
derived from the source filename, with a .LIS extension. The
listing-file-spec can be opticnally specified.

lpso om0

TLD ADA COMPILER | 1960-ADA-2C

ComMPILER USAGE 3 -20

LOs
NOLOG -- defauit

This switch causes the compiler to write in the compilatiom log,
comoand line options and the file specification of the Ada source
f£ile being compiled which is written to to SYSSOUTPUT (the
cperating system’s standard output). This switch is useful in
examining batch output 1logs because it allows the user to easily
determine which files arse being compiled.

MACro
NOMACro -- default

This switch produces an assembly liks object code listing appendsd
to the source listing file. The LIST switch must be enabled or
this switch has no effect.

’MAIN ELAB
NOMAIN_gras -- default

This switch makes the compiler treat the compilation unit being
compiled as a user-defined elaboration or setup program which is
used instead of that normally produced by the ELABORATOR switch.
The source file must be specified instead of a unit name of a
previously compiled procsdure. Osually, the source <file is
modified by the user, starting from the versicn produced by the
WRITE_EIAB switch.

MAXZRRORS =z
MAXERRORS=500 -- default

This switch assigns a valus limit to the number of errors forcing
job termination. Once this value is exceeded, the compilation is
terminated. Information-level diagnostic messages are not included
in the count of errors forcing termination. The specified value’s
range is from 0 to 500.

MOpEL=model - name

If cthis switch is not specified, TiDada provides compilaticn
capabilities that are common to all models of the target.

If chis switch is specified, wvhere model-name is one of the models
below, TlDada provides compilation capabilities that are valid £or
the specified model. The compilation that is performed for a
particular model may be valid for another model of the target if it
supports the same machine-specific code (machine instructions,
domains, etc.).

ﬂmmuﬂa

TLD ADA COMPILER I960-A?A-§§

ComPILER UsaGE

The following axre valid modals:

KUERBICED

NEW rramany
NONEW_rIsrary -- default

The NEW_LIBRARY switch creates an 1960 subdirectory in your current
working directory and an I960.LIB library in that subdirectery,
replacing the contents of the prior subdirectory and library, if
they existed.

The NONEW_LIBRARY switch checks if an I960 subdirsctory exists in
your current working directory and if it does not already exist, it
will crsate the 1960 subdirectory and an I960.1LIB library in that
subdirectory.

NOTE: This switch along with the PARERT LIBRARY switch replaces
the MAKE_LIB switch.

OBJ'Bcr{ sobject-£ile-spec)

NOOssE

CT -- default
or v

This switch produces a rslocatable object £file in the 1960
subdirsctory in the current compilation directory. The default
filename is derived £from the source filenames, with a ".0BJ".
extension.

OPT -. default
SSBL;@W:.:{ vsee})}

NOOPz (= (parameter{,...})}

This switch enables the specified global optimization of the
compiled code. The negatiom of this switch disables the specified
global optimization of the compiled cods.

o

TLD ADA COMPILER ISGD-A?A-%E

ComPILER UsaGck

When the OPT switch is entered, without any parassters, all
optimizations listed Dbeslowv are turned om. This restores the
parameters to their defaults. When it is entersd with parameters,
cnly the specified parameters are turned on.

When the NOOPT switch is entered, without any parameters, all
cptimizations listed below are turned off. When it is entered with
parameters, only the specified paramsters are turned off.

Default optimizations . such as COMMON_SUBEXPRESSION,
CONSTANT _ARITHMETIC, DEAD_CODE, and VALUE_FOLDING, etc. should pot
be changed for normal use. Users may vwish tO change thase
optimizations for configuration or testing purposes, bhowever, TLD
Systems rxecommends that they not be changed. These default
optimizations should be changed only when there is an abnormal
situation with data or the program or a bad, TLD- Or user-created
algorithm. For example, if the program has an unused procedure the’
- default optimization parameter DEAD_SUBPROGRAM default will dslete
) it for production improvemant, however, the user may not want the
unused procedurs deleted for Debugger purposes. If wusers are
finding a need to change these ocptimizaticns, please notify TLD
Systems 80 that we can resolve the problem more efficiently.

CODE_MovnuexT

This parameter moves code tO improve exscuticn time. (For
example, moves invariant code out of a loop). This parameter
is turned on by default.

CODE_StrazguTENING

This parameter ensures that program flow is well Zormed by
performing rearrangement ¢of segments of code. This parameter
is turned on by default.

COMvore_suaxxprEssToN

Expressions with the same cperands are not computed a seccnd
tims. (For example, if an expression uses "A + B" and anothsr
expressicns uses "A + B", the Compiler does not compute the
sscend expression, since it knows it has already computed the
value). This parameter is turned on by default. WARNING :
Turning this switch off may cause unexpected results.

Li > I

TLD ADA COMPILER IQﬁO-A?A-%g:

CompPILER UsaGgE

CONsTaNT_aRTTEMETIC

This parameter performs constant arithmetic. 7This parameter
is turned om by default. WARNING: Turning this switch off
mAy cause unexpected results.

DEAD_Coos

This paramster removes ¢ode that cannot be reached such as
unlabeled code following an unconditiocnal branch. This
parameter is turned on by default. WARKING: Turning thia
switch off may cause unexpected results.

DEAD_Susrrogran

- This paramster removes Subprograms that are not refersnced.
This parameter is turned on by default.

DEAD_Varzaerz

This parameter removes local temporary variables that are not
used during exscution. This parameter is turned on by
default.

DELasszon

This parameter optimises code by desleting redundant
assignments. It ocmnly performs dsletions allowed by the
semantics of Ada. This parameter is turned on by default.

Ixvine

By default, the compiler automatically inlines subprograms
that are not visible in a package spec and if the estimated
code size is smaller than the actual call, it will inline it.
This parameter is turned cn by default.

LIteras_rooL

This parameter overrides the Compiler’s optimization
separation of compile time constants intoc a separats memory
pool. This parameter enables the user to exsrcise complete
control over data allocation. This parameter is turned cn by
default.

LOor_uwrorrrng

This parameter applies to register memcry only. It causes an
expression computed at the end of a loop to be remembered at
the top of the next iteration. This parameter is turned om by
defaulc.

Ty

TLD ADA COMPILER IQBO-A?A-%E

CompiLER UsacE

Pxzruorz

This paraseter performs optimisation in vdry limited
contexts. This parameter is turned on by default.

REGISTER_DEDICATION

This parameter allows dedication of a register to an cbject or
expression value. This parameter is turned omn by dsfault.

SCaxporer

This parameter is used to activate the reorganizer phase of
the Compiler. Instruction Scheduling, as performed by the
Reorganizer, is a phase between the Code Gensrator and the
Object Pormatter phases. The Recrganizer reads the Code File,
reorders ths cods, and cutputs the Code File. This parameter
is turned off by default.

The purpose of the Reorganiser is to perform optimization em
the code gensrated by the Code Gensrator in order to minimize
the amount of time thst the hardware has to wait for data,
gensrated by earlier instructions, to become rsady for uss.

NOTE: If you choose to use this switch, TLD recommends that
the System Adninistrator set the user’'s page f£ile guota to
at least 60,000.

SIncrs_movunz

This parameter crsates ons cbject module per compilation umit
rather than one for each top-level subprogram. If cthis
parameter is not used, and the compilatiom unit spec and body
are in separate files, the extensiocn " _b" is added to the
package name in the object £ile asme of the package body
(i.e., package-name b.ocbj) to differentiate between ths
package body and spec. The user may locate csects from only
the body or spec by specifying the unigue object filename
(package-name b for the body or package-nams for the spec)
followed by the control secticn name. This parameter is
turned on by default. :

STrENGTH_REDUCTION

This parameter selects cperators that exscute faster. This
parameter is turned on by default.

e o

TLD ADA COMPILER IQGO-A?A-%E

CompILER USaGE

Varos_rorom

Substitutions ©of operands known to have the same value are
performed before expressiocn analysis optimization. (Yor
example, if B and C have the same value, ths expression "A +
C* is used and "A + B" will be recognized as common and the
Compiler will not compute the second expression, since it
knows it has ths same value as the first). This parameter is
turned on Dby default. WARNING: Turning this switch off may
cause unexpected results.

PAGx.1ines-per-
PAGE6O .- Gafailt

This switch assigns a value to the nmumber of lines per page for
listing. The value can range from 10 to 99.

PARExT LIBRARYsparent-library-
NOPAREST simmner - detavic

The PARENT_LIBRARY switch uses the specified library as the parent
library for the library to be created. 1750A must be included at
the end of the parent-.library-spec. This switch may only be used
with the NEW_LIBRARY switch. '

If the NOPARENT_LIBRARY switch is used, the library created by the
NEVW_LIBRARY switch will have no parent library.

NOTE: This switch along with the NEW_LIBRARY switch replaces the
MAKE_LIB switch.

PARMs
NOPARMs -- dezault

This PARAMETER switch causes all option switches goveraning the
compilation, including the defaulted option switches, to be
included in the listing file. The LIST cption switch must also be
selected or this switch has no effect. User specified switches are
preceded in the listing file by a 1leading asterisk (*). This
switch adds approximately one page to the listing file.

PHasg -- default
NOPHasz

This switch suppresses the display of phase names during
compilaticn. This switch is useful in batch jobs because it
reduces the verbosity of the batch log Zils.

4——

TLD ADA COMPILER IQGO-A?A-ZC

CompzLER UsacE - 26

REF Io CASE= '
NOREF_Io_cas::Zm -- default

This is a reformatting option, undsr the control of the REFORMAT
switch. This switch determines how variable names appear in the
campiler listing. The options for this switch are:

ALL_LOWER - All variable names ars in lower case.
ALL_UPPER -= All variable names are in upper cases.
INITIAL _CAPS -- All variable names have initial caps. -- dsfault

REF Key cassecpricn
NOREF Kiy_caszeoption -- default

This is a reformatting option, under the control of the REFORMAT
switch. This switch determines hov Ada key words appear in the
S - compiler listing. The opticns for this switch axe:

ALL_LOWER == All Ada key words are in lower case. -- dsfault
ALL_UPPER -- All Ada key words ars in upper CcCase.
INITIAL_CAPS == All AMa key words have initial caps.

REFORMAT({=reformat-file- spec)
NOREFOmRMAT -- default

This switch causes the compiler to reformat the source listing in
the 1listing 2£ile (if no zeformat-file-spec was provided) or
generate a reformatted source file, if a reformmt-file-spec is
present. The default file extension of the reformatted source file
is ".RFM". Reformatting consists of uniform indentation and retains
nuneric literals in their original source <foxm. This switch
performs the reformatting as specified by the REF_ID _CASE,
REF_KEY_CASE, and INDENTATION switches.

SOuRcE -- default
NOSOurcs

This switch causes the input sourcs program to be included in the
listing £ile. Unless they are supprsssed, diagnostic messages are
always included in the listing file.

SYNtax_omry
NOSYNTax_omry -- default

This switch performs syntax and semantic checking on the source
program. No cbject file is produced and the MACRO switch is
ignored. The Ada Program Library is not updated.

Ty ="

TLD ADA COMPILER :|:960-A|3)A-%$

ComrILER Usace

TARGET=i960 -- default

This switch selects the target camputer for which code is to be
gensrated for this compilation. "i960* selects i%0 architecture

operation.

WArNINGS -- default
NOWARmINGS

The WARNINGS switch outputs warning and higher level diagnostic
DeSsages.

The NOWARNINGS switch suppresses the output of both warning-level
and information-level diagnostic messages.

WIoTHacharacters-per-line
WIpTH=110 -- default

This switch sets the number of characters per lins (80 to 132) in
the listing file.

STORE
NOWORD_STORE -- default

The WORD_STORE switch simulates byte and half-word stores by using
full word instructions. This will allow only full word stores to
be performed. The NOWORD_STORE switch will allow Dbyte and
half-word stores to be performed.

WRiTE 5128
NOWRITE_E1AB -- default

The WRITE_ELAB switch generates an Ada source f£ile which represents
the main elaboraticn "setup® program created by the compiler. The
unit name of a previocusly compiled procedurse must be specified
instead of a source file. The WRITE_ELAB switch may not be used at
the same time as the ELABORATOR switch.

Xtaa
NOXTRA -- default

This switch is used to access fesaturss under develcpment or
features not defined in the LRM. See the description of this
switch in Section 3.185.

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,

references in this appendix are to linker documentation and not to this
report.

B-2

DIRECTIVE LANGUAGE

TLD 32-BIT UNIVERSAL LINKER I960-L§K-2§

4 DIRECTIVE LANGUAGE

On any host. the command line calling TlLDlnk may opticnally specify a
linker directive file to control the linking operaticn. The dirsctive
£ile format and individual directives are described in the following
pages.

LY

4.1 DirecTive FILE

Each line of the directive file contains up to 132 characters. Tabs
are treated as blanks. Blanks are used to separate words when no other
punctuaticn separates them; the acctual aumber of blanks is
insignificant. Characters that follow two successive minuses (--) are
ignored. .

A directive ordinarily consists of ocne line of input, however, lines
may be continued using a tilde (~). Only one directive is allowed per
input line. A continuation character can be used to continue directive
values, however, a value cannot bse split between two lines (if the
value does not fit on the curzent line, the continuation character must
be used after the previocus value and the value must be placed on the
following line). Either upper or lower case may be used (they are are
equivalent) except for file names on hosts with case-sensitive file
names.

A directive £file may :include another directive file. The format of
this directive is:

INCLUDE filespec(.lnk)

where the £ile extensiocn .lnk may be opticnally specified if the file
is a directive file, otherwise, if the file is an object module file,
its extension must be supplied (i.e., .obj or .olb must be supplied).

An included f£ile may itself include anocher directive file, that is, in
the example above, filespec.lnk may contain yst another directive
£ile. The level of nested directive files allcwed depends on the
number of <£iles that :the operating system permits to be opened
simultanecusly.

B-24

TLD 32-BIT UNIVERSAL LINKER I960-L§K-2§

OzrecTIVE LANGUAGE

Conditional linking may be performed in che directive file. The formac
of this conditional liaking is:

if logical-expression then

(else | elsif logical-expresszicn then}

endif

Iz the logical-expression resturns a true value, the statements
following the if or the elsif clause will be processed, otherwise, the
cnes following the else clause will be processed.

4.2 DIRECTIVES

TLDlnk directives are dsscribed in this section, in alphabetical order.
The tolloﬁing words, in lower case italics, are used in che
descriptions:

csect -name

This is the name of the control section in the program being
linked.

file

This is a host £ile specification. A file specificatcion must be
completely contained on a line.

group-name

This is a control section that includes specified modules and/or
centrol sections of module(s).

module-name
This is the name of a module in'the program being linked.
paddress

This is a physical address in the form of a hexadecimal number
from 0 to FFFFF.

B-25

DrrEcTIVE LANGUAGE

TLD 32-BIT UNIVERSAL LINKER IQGO-L&!K-ZS

Prage

This is a physical page nmbo:.n:hl!amotah.nd.cml
number from 0.co FFFFF. :

symbol
This is the name of an external symbol in the program being
linked.

vaddress

This is a virtual address in the form of a hexadecimal number
from 0 to FYFEFFFFF (2*=32 - 1).

vpage

This is a wvirtual page number in the form of a hexadecimal
number from 0 to FFFFF.

Bach TLDlnk directive is described below.

ASSIGN (vpagesppage(,...})

The ASSIGN directive causes the specified virtual pages to be
mapped to the corresponding physical page.

For example,

ASSIGN (40000=C0)

causes the specified virtual page 40000 hex to be mapped to the
physical page CO hex.

ASSIGN (40000aC0, 10000=B0)

causes the specified virtual pages 40000 hex and 10000 hex to

be mapped to the physical pages CO hex and B0 hex,
respectively.

COMMENT («}{"}Text co be put in Load Module{"}

The COMMENT directive contains text which TiDlnk puts in the
load module. TLDlnk precedes the text within quotes by ";;" to
distinguish user inserted comments from those inserted by
TID1lnk which begin with ";". All comments specified by COMMENT
directives are iaserted in the load module immediacely
following the initial ccoment which is created by TiDilnk. If

B-26

Ty

TLD 32-BIT UNIVERSAL LINKER IQGO-L&CK-ZE

DznecTIVE LANGUAGE

quotes are specifisd, they must exist at the beginning and end
of the text to be trsated as a ccmment.

DEBUG (rfile)

When DEBOG is used the linker creates a debug file containing
symbols and their valuss for cthe symbolic debugger and a
traceback file containing call and branching informacion. I
DERUG is not specified, the linker does not produce the debug
file and traceback file. The linksr puts symbols which were
included in the rslocacable cbject file in the debug file and
traceback information also in the relocatable object f£ile in
thes traceback file. The name of the debug and tzaceback files
are derived the same way the map file name is derived as
described in the MAP switch. The format of the debug and
traceback files is described in Appendix A.

This directive has the same functionality as the linker swicch
DEBUG described in Chapter S.

This directive is always required (if the End-of-File is not
present). It terminates directive input to TLDlnk, so that any
subsequent input is ignored. After this directive is read.
TiDlnk allocates memory and reads the cbject files to producs
the locad module.

FILL (vaddrsvaddress, lenssize-in-bytes, {"}paccern(*})

The FILL directive is used to £ill in all unused memory with a
user-specifiable value.

The vaddress parameter is the starting virtual address of the
£ill regiocn, the size-in-bytes paramster is the number of bytes
to be filled with the pattern, and the pactern paramster is the
pattern used to £fill in the £fill region. The pair of double
quotes (" ") are required if the f£ill pattern is a character
scring.

GROUP (:group-names) (namel(,aame2...}){(acc=ibuce(,...})}

This directive creates a grouping of control sections. The
argument 2ame can be module-name, module-name:csect-name, OF
:group-name. If module-name is specified (without :csec:-name)
then the wild card "*" is assumed for the csectc-name and all
control sections of the specified load module are used.

Because the group-name is associated with the "mull" module, :it
is always preceded by the null module name: a colon (:). The
group name beccmes a new control section that includes the

B-27

e merme e

TLD 32-BIT UNIVERSAL LINKER 1960-LNK-2C
DxrEcTIVE LANGUAGE 4 - §

specified control sections and the included comntrol sectians
may not be specified in any other group. If actributes are
specified, then only those control sections with the specified
actributes will be included in the group and the group'’'s
actributes consist of only those specified in the directive.

This dizective, as well as the SET directive, can refer to
actributes in pragma Attribute in the sourcs file. Refer to
the Refazsnce Document for the TID Ada Compilex for further
information regarding pragma Attribute.

If no data or code attribute is specified and an instruction
{(code) control sectiocn is included in the specification, the
group will have the code attribute. If data control section(s)
are also specified, a warning message is displayed indicacing‘
chat the group contains mixed insctruction and data concrol

- . sections and that the code attribute is assumed for the group.
If no data or code attributes is specified and no instructicm
(code) control section is included in the specification, the
group will have the data attributes.

The alignment of the group is by the "least common dencminator®
of all contzol section alignment values. The length of the
group is the sum of the lengths of the included control
sections plus necsssary alignment. The leagth (as well as
ocher attributes) ¢f the group may be changed by the SET
directive. After all explicit GROUP directives have been
applied, the Linker groups any remaining ungrouped concrol
sections and groups by similar attributes. Groups may be used
in other group directives.

Artributes may be cne or more of the following to select groups
with those attributes. The boolean attributes are separaced by
a comma to denote a logical ANMD.

is a booclean TRUE if the csect is all readable,
otherwvise, it is FALSE.

is a boolean TRUE if the csect is not all readable,
othexwise, it is FALSE.

WRITE

is a boolean TRUE if the csect is all writable,
otherwigse, it is FALSE.

NOWRITE

is a boolean TRUE if zhe csect is not all writable,
otherwise, it is FALSE.

B-28

WEVPELpS

DIRECTIVE LANGUAGE

TLD 32-BIT UNIVERSAL LINKER I960-L§K-Z§

CODE
is a boolean TRUE if the csect is all codes, otherwvise,
it is FALSE.

NQCQDE

is a boolean TRUE if the csect is not all code,
otherwise, it is FALSE.

DATA
is a boolean TRUE if the csect is all data, otherwise,
it is FALSE.

NODATA

is a boclean TRUR if the csect is not all daca,
otherwise, it is FALSE.

To allow grouping of mors control sections than can fit in a
single directive line, a continuation character can be used or
the GROUP directive can be respeated (using the same group name)
as many times as needed to include all control secticns needed
within that group. For example, if the following is in the
linker directive file:

GROUP :Group_ls(a,b,c)...
GROUP :Group_las(d,e,f)...

Group_1l will centain a,b,c,d,e, and £.

Wild card symbols as previously described may be included in
the module-name, csect-name, and group-name (which is not the
name of the group, but a group to be included).

The ordering of the wild card specifications within cthe linker
directive file is important. If any wild card specification is
a subset of another, the subset should be listed first. For

example, if the following groups are in the linker directive
file:

GROUP :Group_ls=(abew:lon=)...
GROUP :Group_2a{(ab*:lm=*)...

concrol section "abed:lmno* will be included in Group_l, and

since it has been included into a group, will not be included
in Group_2.

The focllowing is an example of incorrect ordering, where the
subset is listed after its containing set:

GROUP :Group_2=(ab<w:lm<)...
B-29

Ry

S

DIRECTIVE LANGUAGE

TLD 32-BIT UNIVERSAL LINKER I960-L§K-2(72

GROUP :Group_la(abc+:lmmw)...

In this example., control secticn "abcd:lmno" will be included
in Group_2, and since it has been included into a group, will
not be included in Group_l.

INCLUDE {(}f£ile{,...}{)}

The INCLUDE directive specifies the file(s) used for subsequentc
linker igput. This is the oanly linker directive that requires
a complete filename (i.e., no file type or extansion is
appendesd to ths supplied name). If the file name ends in .cbj
or .olb, the file is assumed to be an cbject module file. 1If
the file name ends in .lnk, the file is assumed to be a
directive file. If cnly ocne filespec is specified, the
corresponding parentheses are not required. This diractive may
be repeatad.

NOTE: The GROUP and SET directives are used, instead of this
directive, to make specific selections of modules and/or
control sections to be included in the link.

A directive file may include another directive file. The
format of this directive is:

INCLUDE filespec{.lnk)

where the file extension .lnk may be optionally specified if
the file is a directive file, otherwise, if the file is an
cbject module file, its extension must be supplied (i.e., .obj
or .olb must be supplied).

An included file may itself include another directive file,
that is, in the example above, filespec..lnk may contain yet
anocher directive file. The level of nested directive files
allowed depends on the number of files that the operating
system permits to be cpened simultanecusly.

LET symbol = expression

wWhen LET is used, the linker sets the specified symbol to the
specified value or expression. This directive has the same |
effect as defining the symbol as an EXPORT in an cbject

module. Any external references to the specified symbol from

an ocbject module are set to the value specified in the LZT
directive. Currently, the expression argument must be a

hexadecimal number.

gy mermn e

TLD 32-BIT UNIVERSAL LINKER IQGO-L&!K-ZE

DzrecTIVE LANGUAGE

LIBRARY«{(}zile{,...))

This directive causes the specified cbject module library or
libraries to be searched to resolve undefined symbols. The
parencheses are not required if ocanly one filespec is specified.

The order that the filespecs are specified is the order in
which they are searched. If library is used both on the
camand line and in the directive file, the libraries specified
on the command line will be searched first Zollowed by those
specified in the directive file.

TLDlnk will process the library directive or switch at the
point where it is specified, therefore, it should be specified
after includes and searzches.

This dirsctive has the same functicnality as the linker SEARCH
directive and LIBRARY swictch which is described in Chapter §S.

MEMORY (mem cype_name, base_address, length_in_words, -~
word_size_in_bits)

This directive describes a memory unit other than i960 standard
memory to which TLDlnk will allocate cantrol sections
containing cbjects specified in pragma Memory Unit. The
mem_type name argument is the character string specified ?ragma
Memory_Unit, the base_address argument is the starting address
hex value in special memory whers the memory unit objects are
to be allocated, the length in words argument is the hex value
of the size in words of the special memory locaticn, and the
word_size_in bits argument is the hex value of the size in bits
of each word cf special memory.

RESERVE (vaddrsvaddress, lenasize_in_bytes(,...})

This directive indicates that no relccatable control secticns
are to be loaded intoc the specified address space.

SEARCH file

When SEARCH is used. TLDlnk searches the specified file for
modules which define currently undefined external references.
These modules are included as if they had been specified in an
INCLUDE directive. Undefined weak external refersnces (i.e.,
associated with WEAK IMPORT) do not cause inclusicn on a
search, but if an external is weakly referenced (i.e.,
associated with WEAK IMPORT) and strongly referenced (i.e., a
regular IMPORT), its defining module is loaded by SEARCH. New
external references from modules included Sxzm the search file
may cause additional modules to be :iacluded Srom the search

B-31

ﬂmmm

DrECTIVE LANGUAGE

TLD 32-BIT UNIVERSAL LINKER ISGO-L&!K-ZE

file, regardless of the order of modules in tha search file.
For example, if the program references only S, S refersnces T,
and the library contains T followed by S, both S and T are
included from the library.

This directive has the same functicnality as the linkexr LIBRARY
directive and LIBRARY switch which is described in Chapter S.

SET pame’ { (Jatcribucelsvaluel(,accribuce2svalue2, ...}{)}

This directive sets each specified actribute to che
corrssponding value for the specified control section or
- group. The argument name can be module-name,
module-name:csect-name, OF :group-name. If module-name is
- specified (without :csect-name) then the wild card "** ig
assumed for the csect-name and all control sections of the
specified lcad module are used. The parentheses are required
only if more than cne attribute is specified. Because the
group-name is associated with the "aull" module, it is always
preceded by the null module name: a colon (:).

' This directive, as well as the GROUP directive, can refer to
actributes in pragma Attribute in the source file. Refer to
the Raeference Document <Sor the TID Ada Compiler for further

informacion on pragma Attribute.

If no data or code actribute is specified and an instruction
{(code) control section is included in the specification, the
control section or group will have the code attribute. If data
contzrol section(s) are also specified, a warning message is
displayed indicating that mixed instruction and data control
secticns have been included and that the code actzibute is
assumed for the group. If no data or code acttribute is
specified and no inscructicn (code) control section is included
in the specification, the control section or group will have
the data actribute.

Wild card symbols may be included in the module-name and
csect-name consisting of "** which matches cne or more
characters and "?" which matches exactly cone character. All
modules and control sections of the cbject module files listed
in the include directive(s) that match the wild card pattern
are selected.

TLD 32-BIT UNIVERSAL LINKER 1960-LNK-2C

DIRECTIVE LANGUAGE 4 -10

Attributes may be cne or more of the following to set or
reference an attrsibuce valus:

VADDR
is the Dbeginning virtual address of this csect. It
consists of a hex or decimal number. To set addresses)
in region 3, an eight-digit, non-negative, hex oumber
must be used.

PADDR

is the beginning physical address of this csect. Since
the linker does not normally assign physical addresses,
this actribute must be set befors it is referenced.

LEN(GTH)
is the length of this csect.

ALIGN
is the alignment used for this csect.

is a boolean TRUE if cthe csect is all readable,
otherwvise, it is FALSE.

is a boolean TRUE if che csect is not all readable,
otherwise, it is FALSE.

WRITE

is a boolean TRUE if the csect is all writable,
otherwise, it is PFALSE.

NOWRITE

is a boolean TRUE if the csect is not all writable,
otherwise, it is FALSE.

CODE

is a boolean TRUE if the csect is all code, otherwise,
it is FALSE.

NOCCDE

is a bocolean TRUE if the csect is not all code,
otherwise, it is FALSE.

DATA

is a boolean TRUE if the csect is all data, otherwise.
it is FALSE.

TLD 32-BIT UNIVERSAL LINKER

DxrecTIVE LANGUAGE

1960-LNK-2C
4 -1

is a boolean TRUE if cthe csect is not all daca,
otherwise, it is FALSE.

B-34

APPENDIX C
APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is
type SHORT INTEGER is range -32768 .. 32767;
type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -2.12676E+37 .. 2.12676E+37;
type LONG FLOAT is digits 15
range -1.123 558 209 288 95E+307 .. 1.123 558 209_288 95E+307;

type DURATION is delta 2.0**(-14) range -86_400.0 .. 86_400.0;

seecsecse

end STANDARD;

c-1

APPENDIX F

The Ada language definition allows for certain machine_dependencies in a
controlled manner. No machine-dependent syntax Or SemAntic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementaton-dependent pragmas and attributes, certain
machine-dependent conventions, as mentioned in chapter 13 of the
MIL-STD-1815A; and certain allowed restrictions on representation
clauses.

The full definition of the implementation-dependsnt chaxacteristics of
the TLD VAX/i960 Ada Compiler System is presented in this section
extracted from the compiler ntcmc_o manual.

vax/1960/TRONIX PAGE 1

TLD ADA COMPILER IQGO-A?A-ZE

1960 TanczT CompILER

This section idantifies correspondences between features of the TlDacs
and sections of ths Ada Language Reference Manual (LRM).

5.1 LRM CH.1 - INTRODUCTION

The formal standards for the Ada Programming Language are provided in

the Ada Lanquage Reference Manual (LRM), ANSI/MIL-STD-181S5A. TLD
Systems has developed TlDacs in the spirit of those standards.

The machine dependencies permitted by the Ada language are identified
in LRM Appendix F. No machine dependant syntax, semantic extensions,
or restrictions are allowed. The only acceptable implementation
dependencies are pragmas and attributes, the machine dependent
conventions explained in LRM Chapter 13, and some restrictions on
representation clauses.

TLD Systems has develcped implementation-dependent software to
specifically conform to these restrictions and has developed
implementation-independent pragmas and attributes in the spirit of the
LRM. This software is described, below, in individual discussions that
follow the topical order (within chapters and appendices) of the LRM.
For a detailed dascription of the Run Time environment, refer to the
Reference Document for cthe TID Ada Run Time Svstem,

5.2 LRM CH.2 - LexrcaL ELEMENTS

The items described in this section correspond to the standards in
Chapter 2 of the LRM.

The following limits, capacities, and restrictions are imposed by
the Ada compiler implementation:

The maximum number of nesting levels for procedures is 10. There

is no limit to nesting of ifs, loops, cases, declare blocks, select
and accept statements.

ii

TLD ADA COMPILER | 1960-ADA-2C
1960 TarnceT ComprLER 5§ - 2

The maximum number of lexical elements within a language statesmant,
declaration or pragaa is not explicitly limited, but limited
depending on the combination of Ada constructs coded.

The maximum number of procedures per compilation unit is S00.

The maximum number of levels of nesting of INCLUDE files is 10.
There is no limit on the total number of INCLUDEd or WITHed files.

Approximately 2000 user-dsfined elements are allowed in a
compilation unit. The exact limit depends upon the characteristics
of the elements.

A maximum of 500 severe (or mors serious) diagnostic messages are
allowed for a compilation.

The range of status values allowed is the same as the range of
integer values, -2147483648..2147483647. .

The maximum number of parameters in a procedure call is 20.
The maximum number of characters in a name is 120.

The maximm source line length is 120 characters.

The maximum string literal length is 120 characters.

The source line terminator is determined by the editor used.

Name characters have external representation.

5.3 LRM CH.3 - DECLARATIONS AND TYPES

The items described in this section correspond to the standards in
Chapter 3 of the LRM.

Rumber declarations are not assigned addresses and their names are
not permitted as a prefix to the ‘'address attribute.

Objects are allocated by the compiler to occupy cne or more 8 bit
bytes. Only in the presence of pragma Pack or record representation
clauses are objects allocated to less than a word.

'‘Address can be applied to a constant cbject to return the address
of the constant object.

Bxcept for access objects, uninitialized objects contain an

ii

—

TLD ADA COMPILER 1960-ADA-2C
1960 TarceT ComPILER 5 - 3

undefined value. An attespt to refersnce the values of an
uninicialized object is not detected.

The maximum number of enumeration literals of all types is limited
only by available symbol table space.

The predefined integer types are:

Integer range -2_147_483_648 .. 2_147_483_647.
Short_Inceger range -32_768 .. 32_768

System.Min_Int is -2_147_483_648.
System.Max_Int is 2_147_483_647.

The predefined real types are:

Float digits 6. ¢
Long_Float digits 1S.

System.Max Digits is 1S.
There is no predefined fixed point type name. Fixed point types
are implemented as data depending upon the rangs of values by which
the type is comnstrained.

Index constraincs and other address values (e.g., access types) are
limited to 2147483647. -

The maximum array size is limited to 2147483647.

The maximum string length is 2147483647.

Access objects are implemented as an unsigned integer. The access
literal Null is implemented as 0.

Thezre is no limit on the number of dimensions of an array type.
Array types are passed as parameters opposite unconstrained formal
parameters using a descriptor packet vector.

Additicnal dimension bounds follow immediately for arrays with more
than one dimension.

Packed strings are generated instead of unpacked strings.

ii

1960 TarceT CoMmpILER

TLD ADA COMPILER ISSO-A?A-ZE

5.4 LRM CH.4 - NaMes anD EXPRESSIONS

The items described in this section correspond to the standards in
Chapter 4 of the LRM.

Machine _Overflows is True.

Pragma Controlled has no effect since garbage collection is never
performed.

5.5 LRM CH.5 - STATEMENTS

The items described in this section correspond to the standards in
Chapter S of the LRM.

The maximum number of statemants in an Ada source program is
undefined and limited only by symbol table space.

Unless they are quite sparse, Case statements are allocated as
indexed jump vectors and therefore, are very fast.

Loop statements with a "for" implementation scheme are implemented
" most efficiently if the range is in reverse and down to zero.

Data declared in block statements is elaborated as part of its
containing scope.

5.6 LRM CH.6 - SUBPROGRAMS

The items described in this section correspond to the standards in
Chapter 6 of the LRM.

Axrrays, records, and task types are passed by reference.

5.7 LRM CH.7 - PackaGes

The items described in this section correspond to the standards in
Chapter 7 of the LRM.

Package elaboration is performed dynamically, permitting a warm
restart without reloading the program.

ii

TLD ADA COMPILER 1960-ADA-2(C
1960 TargeET COMPILER 5§-§

5.8 LRM CH.8 - VisiBIiLITY RULES

Not applicable.

WOTE: TLD has not produced a modification of the item(s) described in
this LRM section or documentation parallel to the information in this
LRM section.

5.9 LRM CH.9 - Tasks

The items described in this section correspond to the standards in
Chapter 9 of the LRM.

Task objects are implemented as access types pointing to a Process
Control Block (PCB).

Type Time in package Calendar is declared as a record containing
two integer values: the current value of the real time clock
counter and the number of ticks that have elapsed on the countdown
timerx.
Pragma Priority is supported with a range defined in package
System. The restriction on a dynamic expression for a task’s
priority has been removed congistent with Ada 9X. Note: Like Ada
9X, a pragma Priority placed in the main subprogram remains
restricted to a compile time static expression.
Pragma Shared is supported for scalar cbjects.
TLDada allows either a duration or a clock time to be specified in
a delay statement. If a duration is specified, the task is delayed
for that duration. If a clock time is specified, the task is
delayed until that clock time is reached.
The format for specifying a duration is:

delay expression
where expressiocn is of type Duracion.
The format for specifying a clock time is:

delay until expression

where expression is of type Calendar.Time.

ii

TLD ADA COMPILER I960-A?A-22

1960 TarceT COMPILER

Package Calendar is described in the Refersnce Document for the TID
Run Time Svstem, 19360 Target.

5.10 LRM CH.10 - ProGRAM STRUCTURE/COMPILATION

Ada Program Library processing is described in the Reference Documant
. he TID Ada Lil M {960 T

Multiple Ada Program Libraries are supported with each library
containing an optional ancestor library. The predsfinad packages are
contained in the TID standard library, I960.LIB

5.11 LRM CH.11l - EXCEPTIONS

Exception handling is described in the Referxence Document for the TLD
Run Time System, i960 Target.

Exception cbjects ars allocated access objects to the exception name
string. The implementation of exceptions is described in the Refersnce
Rocument for the TID Run Time Svacem, i960 Target.

Exceptions are implemented by the TLD Ada Compiler System to take
advantage of the normal policy in real time computer system design to
reserve 50% of the duty cycle. By executing a small number of
instructions in the prologue of a procsdure or block containing an
exception handler, a branch may be taken, at the occurrence of an
exception, directly to a handler rather than performing the time
consuming code of unwinding procedure calls and stack frames. The
philosophy taken is that an exceptiocn signals an excepticnal conditionm,
perhaps a sericus one involving recovery or reconfiguration, and that
quick response in this situation is mors important and worth the small
throughput tradeoff in a real time environment.

TiDada allows one task to asynchrounously signal a another task by
raising an excepticn in the other task. The following Ada statement
may be used in an Ada program to exercise this capability:

raise exception_name in task_name

There is no direct effect on the task raising the exception. It
continues executing the code following the raise statement. The
context of the target task is set so that the next time it runs, it
will act as if the exception had been raised at the point at which it
was last exscuting. This feature requires the compiler switch XTRA.

ii

TLD ADA COMPILER 1960-ADA-2C
1960 TargET ComPILER 5§ - 7

5.12 LRM CH.12 - GeENErIC UnITS

Generic implementation is described in the Reference Document for the
IIR _Run Time Svstem. i960 Targec,

A single generic instance is generated for a gensric body, by default.
Generic specifications and bodies need not be compiled together nor
need a body be compiled prior to the compilaticn of an instanciation.
Because of the single expansion, this implementation of generics tends
to be more favorable of space savings. To achieve this tradeoff, the
instantiations must, by nature, be mors general and are, therefore,
somevhat less efficient timewiss. Refer to pragma Instantiate for more
information on controlling instantiation of a generic.

5.13 LRM CH.13 - CLAUSES/IMPLEMENTATION

Representation clause support and restrictions are generally described
in Section 5.2.F.

, AMdditional Information

A comprehensive Machine Code package is provided and supported.
The specification for this package is included in the
Machine_Code_.Ada file.

The present version of the TLD i960 Ada Compiler System supports
two forms of code insertion language features. In addition to the
standard LRM form od record aggregate form of code insertions that
are fully supported, TLDacs supports an alternative form supplied
with package Machine_Code that defines a procedure for each 1960
architecture instruction that is intrinsically implemented inline
by using a pragma Interface with a language type of i%960; each such
procedure results in one instruction being inlined. Because a
procedure form is used, the restrictions placed upon the
Machine_Code aggregate form of inserticn that prohibit mixing in
the same scope with declarations, statements, and functions do not
apply. Furthermore, the procedure form offers a more friendly
syntax that corresponds more to assembler input that does not
require all fields to be specified (as is true for machine code
aggregates) and can make use of parameter defaulting for such
fields as index registers.

To further support those users who need to write at the assembly
level, several additional procedures and pragmas have been added
that assist the user in accessing Ada expressions, modifying Ada
cperands, and in manipulating registers. Pragma Register may be

ii

TLD ADA COMPILER IQGO-A?A-Zg

1960 TArRGET COMPILER

applied to an Ada cbject to direct the compiler to allocate
(dedicate) the object to the designated registexr. Use of this
cbject on the left side of an assignment scatement will result in
che right side expression being computed and loaded into the
register associated with the left side cbject, a la C register
variables. Use ¢of the cbject in a valus reference context will
result in a use of the value currently found in the associated
register. This approach permits direct access to values from
complicated Ada expressions, packed and subscripted operands,
discriminated record components without having to know how the
compiler actually allocated the objects. Two additional procedures
are defined, Protect and Unprotect, which each taks a register
parameter identifying & register that is to be reserved from
compiler use within the range of statements bracketed by the
Protect/Unprotect call pair.

Pragma Interface with a language type of Interrupt will result in
the prologue and epilogue of the indicated procedure generated to _
cenform to the TLDrtx conventions for interrupt handlers. A
language type of Void will prevent the compiler from generating any
prologue or epilogue code and leave the responsibility for the
procedure entry and exit code to the statements within the
procedure: usually the above described intrinsically built-in
machine codes procedures.

Unchecked Deallocation and Unchecked_Conversion are supported.
Procedure Unchecked Deallocation (LRM 13.10.1)

Function Unchecked _Conversion (LRM 13.10.2)

5.14 LRM CH.14 - Inrut/OuTPUT

The items described in this section correspond to the standards in
Chapter 14 of the LRM.

File I/0 operations are not supported.

Input/output packages and associated operations are explained in
Section S.2.F of this manual.

ii

T mmImmmmmm—m——

TLD ADA COMPILER IQGO-A?A-ZS

1960 TarGcET COMPILER

5.2.A LRM App.A - PREDEFINED LANGUAGE ATTRIBUTES

The items referenced in this section correspond to the standards in
Appendix A of the LRM.

All LRM-defined attributes are supported by the TLDacs.

5.2.B LRM App.B - PREDEFINED LANGUAGE PRAGMAS

The items described in this section correspond to the standards in
Appendix B of the LRM. Any differences from the implementation
described in the LRM are listed below.

PRAGMA CONTROLLED

This pragma is not supported.

PRAGMA ELABORATE

This pragma is implemented as described in the LRM.

PRAGMA INLINE

This pragma is implemented as described in the LRM.

PRAGMA INTERFACE

pragma interface (language name, Ada_entity name(, string});
pragma interface (system, Ada_entity_name) ;

Pragma Interface allows references to subprograms and cbjects that
are defined by a foreign module coded in a language other than Ada.

The following interface languages are supported:

o Assembly for calling Auenibly language routines;

o Intel’s i960 Architecture Specification for defining built-in
instruction procedures.

If cthe Ada_entity name is a subprogram, LRM rules apply to the
pragma placement. Pragma Interface may be applied to overlocaded
subprogram names. In this case, pragma Interface applies to all
preceding subprogram declarations if those declarations are not the
target of another pragma Intexface.

ii

TLD ADA COMPILER 1960-ADA-2C
1960 TarGET COMPILER 5-10

For example:

package Test is
procedure P1;
pragma Interface (Assembly, P1, "Asm_Routine_1");
procedure Pl (x:Long_Float);
pragma Interface (Assembly, P1, °Asm_Routine_2%);
end Test;

In the example above, the first pragma Interface applies to the
first declaration of procedurs Pl. The second pragma Interface
applies to only the second declaration of procedure Pl because the
first declaratiocn of Pl has already been the object of a preceding
pragma Interfacs.

If the Ada_Entity_Name is an ocbject, the pragma must be placed
within the same declarative regicn as the declaration, after the
declaration of the object, and before any refersnce to the cbject.

Void may be used as the language_ name tO prevent the compiler from
generating any prologue or epilogue code and leave the
responsibility for the procedure entry and exit code to the
scatements within the procedure.

If the third parameter is omitted, the Ada name is used as the name
of the external entity and the resolution of its address is assumed
to be satisfied at link time by a corresponding named entry point
in a foreign language module.

If the optional string parameter is present, the external name
provided to the linker for address resolution is the contents of
the string. Therefore, this string must represent an entry point
in another module and must conform to the conventions of the linker
being used.

An object designated in an Interface pragma is not allocated any
space in the compilation unit containing the pragma. Its

allocation and location are assumed to be the responsibility of the
defining module.

PRAGMA LIST
pragma List (on | off);

Compiler switch /LIST must be selected for the pragma List to be
effective.

ii

TLD ADA COMPILER I960-A15)A-§E

1960 TarceT COMPILER

PRAGMA MEMORY_SIZE
pragma Memory_Size (numeric_literal):;

This pragma is not supported. This number is declared in package
Systen.

PRAGMA OPTIMIZE

This pragma is not supported. Compiler switches control compiler
optimization.

PRAGMA PACK

This pragma is implemented as defined in the LRM.

PRAGMA PAGE

This pragma is implemented as defined in the LRM.

PRAGMA PRIORITY

This pragma is implemented as defined in the LRM. Priority
contains a range defined in System_.Ada.

PRAGMA SHARED

This pragma is implemented as defined in the LRM. This pragma may
be applied only to scalar cbjects.

PRAGMA STORAGE_UNIT
pragma Storage_Unit (numeric_literal);

This pragma is not supported. This number is declared in package
System and has 8 bits per byte. :

ii

TLD ADA COMPILER IQGO-A?A-ZC

2960 TarGceT CompILER

pragma Suppress
pragma Suppress

The all_checks

- 12

(access_check) ;
(all_checks) ;

parameter eliminates all run time checks with a

single pragma. In addition to the pragma, a compiler switch
permits control of run time check suppression by command line
option, eliminating the need for source changes.

pragma Suppress
pragma Suppress
pragma Suppress
pragma Suppress
pragma Suppress
pragma Suppress
pragma Suppress
pragma Suppress

(discriminant_check) ;
(division_check) ;
(elaboration_check) ;
{index_check) ;
(length_check) ;
{range_check) ;
{overflow_check) ;
(storage_check) ;

PRAGMA SYSTEM_NAME

pragma System_Name (enumeration_literal);

This pragma is not supported. Instead, compiler option is used to
select the target system and target Ada library for compilation.

5.2.C LRM App.C-PREDEFINED LANGUAGE ENVIRONMENT

The items described in this section correspond to the standards in

Appendix C of the LRM.

PACKAGE STANDARD

The specification for this package is included in the Standard_.Ada

file.

5.2.D LRM App.D - GLOSSARY

Not applicable.

ii

TLD ADA COMPILER 1960-ADA-2C
1960 TARGET CompILER 5§ -13

5.2.E LRM App.E - SYNTAX SUMMARY

Refer to "Appendix B. Ada Language Syntax Cross Referencs® for the TLD
cross-referenced expression of this information.

5.2.F LRM App.F - IMPLEMENTATION CHARACTERISTICS

The items described in this section correspond to the standards in
Appendix F of the LRM.

IMPLEMENTATION-DEPENDENT PRAGMAS
PRAGMA ADDRESS_SPACE

pragma Address_Space (name{, subsystem_name}) ;

This pragma allows users to specify the association of a
compilation unit with a logical address space. This capability
will support the definition of i960 Extended Architecture "Domains"
and domain calls.

The following switch may be entersd on the TLDada command lins and
used instead of this pragma to associate compilation unit(s) with a
logical address space.

/addxess_spacesname| (name, subsysten_name)

In either the pragma or the switch, name is the name of the address
space and subsystem name is the name of the subsystem to which the
address space belongs. If subsystem name is not supplied, then the
address space does not belong to a subsystem.

This pragma may appear in any compilation unit. The command line
switch may appear in any compilation, and applies to all the
compilation units in the compilation.

This capability does not yet allow users to indicate cbjects that
are to be implemented and referenced as independent objects.

TLDlnk will verify that all compilation units in the link have an
address space attribute of the same value, or have no address space
attribute and will create either a domain (if an address attribute

is specified) or a program (if no address space attribute is
specified) .

ii

TLD ADA COMPILER IQGO-A?A-ZC

1960 TarceT COMPILER - 14

PRAGMA ADDRESS_SPACE_ENTRY
pragma Address_Space_Entry (name{, encry_number)(, eacry_type}):

This pragma allows users to indicate vhich subprograms represent
entries into the defined logical address space. This capability

will support the definition of 1960 Extended Architecture "Domains*
and domain calls.

The name is the name of a previously dsclared subprogram, the
entry number is an integer expression which is evaluatable atc
compile tima, and the entry _type is cne of the following: local,
Supervisor, or Subsystem. If entry type is not specified, it
defaults to Subsystem.

This pragoa may appear only in a compilation unit for which an
address space has been specified either by pragma or command line
switch.

This capability does not yet allow users to indicate objects that
are o be implemented and referenced as independent objects.

TiDlnk will verify that all compilation units in the link have an
address space attribute of the same value, or have no address space
attribute and will create either a domain (if an address attribute

is specified) or a program (if no address space attribute is
specified) .

PRAGMA ATTRIBUTE

pragma Attribute (Attribute-Names>Attribute-Value, ~
Item-Name({,...});

This pragma allows grouping of control sections with the specified
attribute.

If Item-Name is omitted, the specified attribute applies to all
control sections in the current module.

If Item-Name is Name’'csect, the specified attribute applies to the
contzxol section of the module containing Name. Name may be a
label, procedure, or data cbject.

If Item-Name is Name’'code, the specified attribute applies to the
code control section of the module containing Name.

ii

TLD ADA COMPILER 1960-ADA-2C

1960 Tarcer CompILER 5§-15

If Item-Name is Name’'data, the specified attribute applies to the
data control section of the module containing Name.

If Item-Name is Name’constant, the specified actribute applies to
the constant control section of the module containing Name.

No other form of Item-Mame is allowed.

The linker directives GROUP and SET, described in Chapter 4 of tha

Refaxence Document for the TID Linker can refer to attributes in
pragma Attribute in the source file.

PRAGMA AUDIT
pragma Audit (Ada-name(,...}); *

This pragma causes an error message to be generated for the
compilaticn in which an Ada name, that is specified by this pragma,
is referenced. The Ada name may be a package, scope, data, etc.

PRAGMA COMPRESS
pragma Campress (subtype_ name) ;

This pragma is similar to pragma Pack, but has subtly different
effacts. Pragma Compress accepts cne parameter: the name of the
subtype to compress. It is implemented to minimize the storage
requirements of subtypes when they are used within structures
(arrays and records). Pragma Compress is similar to pragma Pack in
that it reduces storage requirements for structures, and its use
does not otherwise affect program operation. Pragma Compress
differs from pragma Pack in the following ways:

© Unlike pragma Pack, pragma Compress is applied to the subtypes
that are later used within a structure. It is pot used on the

structures themselves. It only affacts structures that later
use the subtype; storage in stack frames and global data are
unaffected.

-] Pragma Compress is apbliod to discrete subtypes only. It
cannot be used on types.

o Pragma Compress does not reduce storage to the bit-level. It
reduces storage to the nearest "natural machine size". This
increases total storage requirements, but minimizes the
performance impact for referencing a value.

ii

TLD ADA COMPILER 1960-ADA-2C
1960 TanceT COMPILER 5 - 16

For example:

subtype Small_Int is Integer range 0 .. 2S5;
pragma Compress (Small_Int) ;
type Num_Array is array (1 .. 1000) of Small_Int;

In chis example, Small Int will be reduced from a 32-bit object to
an unsigned 8-bit cbject when used in Num_Array.

If pragma Compress had not been used then Small_Int would be the
same size as Integer. This is bscause a subtype declaration should
not change the underlying object representation. A subtype
declaration should only impose tighter constraints on bounds. 1In
this manner a subtype does not incur any extra overhead (other than
its range checking), wvhen compared with its base Cype. Pragma
Compress is used in those cases where the underlying representation
should change for the subtype, thersfore:

-] Small_Int is compatible with Integer. It may be used anywhere
an integer is allowed. This includes out and in out parameters
to subprograms.

© A Small_Int object is the same size as Integer when used by
itzself. This minimizes run time overhesad requirements for
single cbjects allocated in the stack or as glcbal data.

0 Small _Int is 8 bits when used within a record or an array.
This can dramatically reduce storage requirements for large
structures. The access performance for compressed elemants is
very near that of the un-compressed elements, but a slight
performance cost is incurred when the compressed value is
passed as an cut or in out parameter to a subprogram.

NOTE: Small_Int‘’s storage requirements could be reduced by
declaring it as a type rather than a subtype, however, Small_ Int

would not be compatible with 1Integer, and this could cause
considerable problems for some users.

PRAGMA CONTIGUOUS
pragma Contiguous (type_name | object_name) ;

This pragma is used as a query to determine whether the compiler
has allocated the specified type of object in a contiguous block of
memory words.

ii

TLD ADA COMPILER 1960-ADA-2C
1960 TArRGET COMPILER 5 -17

The compiler generates a warning message if the allocation is
noncontiguous or is undstermined. The allocation is probably
noncontiguous when data structures have dynamically sized
components. Ths allocation is probably undetermined whan
unresolved private types are forward type declarations.

This pragma provides information to the programmer about the
allocation scheme used by the compiler.

PRAGMA EXPORT
pragma Export (language_name, ada_entity_name, (string});

Pragma Export is a complement to pragma Interface. Export directs
the compiler to make the ada_entity_name available for referencs by
a foreign language module. The language_name parameter identifies
the language in which the module is coded.

Assembly is presently supported by Export. Ada is permitted and
presently means the same as Assembly. The semantics of its use is
subject to redefinition in future releases of TLDada. Void may be
used as the language name to specify the usexr’'s language
convention. As a result of specifying Void, the Compiler will not
allocate local stack space, will not perform a stack check, and
will not produce prologue and epilogue code. If the optional third
parameter, string, is used, the string provides the names by which
the entity may be referenced by the foreign module. The contents
of this string must conform to the conventions for the indicated
foreign language and the linker being used. TLDada does not make
any checks to determine whether these conventions are obeyed.

Pragma Export supports only cbjects thit have a static allocation
and subprograms. if the ada_entity name is a subprogram, this
Export must be placed in the same scope within the declarative

region. If it is an cbject, the ada_entity_name must follow the
object declaration.

NOTE: The user should be certain that the subprogram and object
are ealaborated bhefore the reference is made.

ii

T

1960 TarceT CompILER

TLD ADA COMPILER IQGO-A?A-ZIE

PRAGMA IF

pragma If (compile_time_expression) ;
pragaa Elsif (compile_time_ expression) ;
pragma Else;

pragma End{ if};

These souxce dirsctives may be used to enclose conditionally
compiled source to enhance program portability and configuraction
adaptation. These directives may be located vhers language defined
pragmas, statements, Or declarations are allowed. The source code
following these pragmas is compiled or ignored (similar to the
semantics of the corresponding Ada statements), dspending upon
wvhether the compile_time expression is true or false,
respectively. The primary difference between these directives and
the corresponding Ada statements is that the directives may enclose
desclarations and other pragmas.

NOTE: To use the pragma IF, ELSEIF, ELSE, or END, the /XTRA
switch must be used.

PRAGMA INCLUDE

pragma Include (file_path_name_scring) ;

This source directive in the form of a language pragma permics
inclusion of another source file in place of the pragma. This
pragma may occur any place a language defined pragma, stcatemsnt, oOT
declaration may occur. This directive is used to facilitate source
program portability and configurability. Iz a partial
file_path name string is provided, the current default pathname is
used as a template. A file name must be providsd.

NOTE: To use the pragma INCLUDE, the /XTRA switch must be used.

PRAGMA INSTANTIATE
pragma Instantiate (option{, name});

This pragma is used to control instantiation of a particular
generic.

ii

TLD ADA COMPILER IQﬁO-A?A-%S

1960 TarGET COMPILER

To establish a default mode of instantiacion for all gensric
instantiations within the compilation, the following switch may be
entered on the TlDada command line and used instead of this pragma:

/instantiatesoption

In either the pragma or switch, option instructs the Campiler to
instantiate generics in the manner specified, as described below:

single_body - a single body is used for all instantiations
macxo - each instantiation produces a different body

In this pragma, name is the name of the generic to which this
pragma applies.

There are two basic forms for this pragma. The first form omits
the second parameter, is associated with a generic declaration, and
is permitted to occur only within a generic formal part (i.e.,
after “"generic" but before "procedure®, "function", or "package”).
In this form, the pragma establishes the default mode of
instantiation for that particular generic.

The second form uses the second parameter, is associated with the
instantiation, and may appear anywhere in a declarative part except
within a generxic formal part. This form specifies what mode is to
be used for the instantiation of the named generic which follows in
the scope in which the pragma appears. This form of the pragma
takes precedence over the first form.

In the following example, assume the following definition:

generic

pragma instantiate (single_body) ; -- pragma 1
package G ...

end G;

generic

pragma instantiate (macro) ; -- pragma 2
package H ...

end H;

ii

TLD ADA COMPILER 1960-ADA-2C
1960 TarGgeT CompILER 5 -20

package A is new G{(...
package B is new G{...
package C is new H(...
package D is new H(...

.. wme me w,

pragma instantiate (macro, G); -- pragma 3

package E is new G(...);
package F is new G(...);

In the above example, packages A and B share the same body, dus to
pragoma 1. Packages C, D, E, and F will be treated as macro
instantiacion C and D because macro instantiation is the default
for H (due to pragma 2) and for E and F because they follow pragma
3.

In both the pragma and awitch:
O Nested instantiations and nested generics are supported and
generics defined in library units are permitted.

© It is not possible to perform a macro instantiation for a
generic whose body haa not yet been compiled.

In this pragma:

o It is also not posaible to perform a macro instantiation
from inside a single-bodied instantiation, because the
macro instantiation requires information at compile time
which is only available to a single-bodied generic at
exacution time.

In the event of a conflict between the pragma and switch, the
switch takes precedancs.

Please refer to Section 3.12 *"Generics" for more information on the

advantages and disadvantages in using single_body generics versus
MACTZO generics.

PRAGMA INTERFACE_NAME
pragma Interface_Name (Ada_encity name, string);
This pragma takes a variable or subprogram name and a string to be
used by the Linker to reference the variable or subprogram. It has

the same effect as the optional third parameter to pragma
Interface.

ii

TLD ADA COMPILER IQGO-AISJA-ZC

1960 TarGET COMPILER - 21

PRAGMA I0_OBJECT
pragma IO_Object (object_name | type_name{,...});

An IO _Object is an object which is fully contained within a page
(4096 bytes) and which begins and ends on a full word (4 byte)
boundary. 16 bytes of space preceding the IO_Object are reserved
by the Compiler for user-specified use. An object is specified to
be an IO_Object by use of the pragma IO_Object.

If pragma IO _Object is applied to a type, then any object of that
type is an I0_Object. 1If pragma IO_Object is applied to an object,
then that cobject is an IQO_Object.

Only static ~bjects may be IO_Objects. If an attempt is made to
specify an object which is not static (e.g., an object dsclared
within a subprogram) as an IO_Object, TlLDada issues a warning and
the cbject is treated as a normal object.
The following is an example of Ada source in which pragma IO_Object
is applied to an object:

type Buffer Type is ...

pragma IO _Object (Buffer_Type);

Buffer_Object : Buffer_Type;

An IO_Object can only be applied to scalar or composite types and
cbjects but cannot to compcnent (s) of a composite type.

An IO_Attribute can be used to determine whether or not an cbject

is an IO _Object and to return its value. Refer to section
Implementation-Dependent Attributes in this Chapter for more
information.

PRAGMA INTERRUPT_KIND

pragma Interrupt_Kind (emtry_name, encry_type(, duratioam});
An interrupt entry is treated as an "ordinary" entry in the absence

of pragma Interrupt_Kind. When pragma Interrupt_Kind is used, an
interrupt entry may be treated as a "conditional" or "timed" entry.

ii

TLD ADA COMPILER I960-A2A-ZC

1960 TarceET COMPILER - 22

This pragma must appear in the task specification containing the
entry named and atter the entry name is declared. Three
encry_types are possible: ordinary, timed, and conditiocnal. The
opticnal parameter duration is applicable only to timed entries and
is the maximum time to wait for an accept.

For an ordinary entry, if che accept is not ready, the task is
Queusd. For a conditiocnal entry, if the accept is not ready, the
interrupt is ignored. For a timed entry, if the accept is not
ready, the program waits for the period of time specified by the
duration. If the accept is not ready in that periocd, the interrupt
is ignored.

PRAGMA LOAD
pragma Load (literal_string);

This pragma makes the Compiler TLDada include a foreign object
(identified by the literal_string) into the link command.

PRAGMA MEMORY_UNIT
‘pragma Memory Unit (mem_type_name, ocbject_name | type name, {...});

TLDacs will locate objects in memory units other than i960 standard
memory . Such objects are specified by use of pragma Memory_ Unit.
TLDada creates a control section for the specified memory unit and
allocates the specified objects or all objects of the specified
type to that control section. It passes the memory umit
information to TlDlnk in the cbject module. The user specifies the
location and size of the non-standard memory unit to link through a
MEMORY directive. The mem type name is the name of the memory unit
and is currently one of the following:

SPE

BME

GLOK

LoT
SPMMIC
PEMMIC
SPMCASIU
PBMCASIU
FITS

WWPROM
SUBBUS

ii

TLD ADA COMPILER I%O-AISJA-ZC

1960 TamngeT COMPILER

——

- 23
and either object_name (the specified cbject) or the type_name (all
cbjects of that type) may be specified.
FOor example:

pragma Msmory Unit (SPE, Buffer_Type):

will collect all cbhjects of Buffer_Type in a contrcl secticn for
the memory unit name SPE.

The only legal reference to an cbject in a memory unit is a
‘address refesrence.

PRAGMA MONITOR

pragma Monitor;

The pragma Monitor can reduce tasking context overhead by
eliminating context switching. This pragma identifies invocation
by the compiler. With pragma Monitor, a simple procedure call is
used to invoke task entry.

Generally, pragma Monitor restricts the syntax of an Ada task,
limiting the number of operations the task performs and leading to
faster exscution.

The following restrictions pertain to Ada constructs in monitor
tasks:

©c Pragma Monitor must be in the task specification.

© Monitcr tasks must be declarxed in library level, nongeneric
packages.

o A monitor task consists of an infinite loop containing cne
select statement.

© The "when condition®" is not allowed in the select alternative of
the sslect statement.

o The only selective wait alternative allowed in the sslect
statement is the accept alternative.

o All exscutable statements of a monitor task must occur within an
accept body.

o Only one accept body is allowed for each entry declared in the
task specification.

ii

TLD ADA COMPILER IQBO-A?A-%E

1960 TARGET COMPILER

If a task body violates restrictions placed on monitor tasks, it is
identified as erronecus and the compilation fails.

PRAGMA NO_DEFAULT_INITIALIZATION

pragma No_Default_Initialization;
pragma No_Default_lInitialization (typename{(,... });

The LRM requires initialization of certain Ada structures even if
no explicit initialization is included in the code. For example,
the LRM requires access_type objects to have an initial value of
*"NULL." Pragma No_Default_Initialization prevents this default
initialization.

In addition, initialization declared in a type statement is
suppressed by this pragma.

TLD implementation of packed records or records with representation
clauses includes default initialization of filler bits, i.e., bits
within the allocated size of a variant that ars not associated with
a record component for the variant. No_Default_Initialization
prevents this default initialization.

This pragma must be placed in the declarative region of the
package, before any declarations that require elaboration cods.
The pragma remains in effect until the end of the compilation unit.

NOTE: To use the pragma, NO_DEFAULT_INITIALIZATION, the /XTRA

switch must be used. The ugse of this pragma may affect the
results of record compariscns and assignments.

PRAGMA NO_ELABORATION
pragma no_elaboration;
Pragma No_Elaboration is used to prevent the generation of
elaboration code for the containing scope. This pragma must be

placed in the declarative region of the affected scope before any
declaration that would otherwise produce elaboration code.

This pragma prevents the unnecessary initialization of packages

that are initialized by other non-Ada operations. Pragma
No_Elaboration is used to maintain the Ada Run Time Library
(TLDrtl) .

ii

TLD ADA COMPILER 1960-ADA-2C

1960 TarceT CoMPILER 5§ -25

For example:

package Test is
Pragma No_Elaboration;
for Program_Status_Word use
recoxd at mod 8;
System_Mask at O*WORD range 0..7;

Protection_Key at O*WORD range 10 .. 11; -- bits 8,9 unused

end record;
end Test;
In the above example, the No_Elaboration pragma, prevents the

gensration of elaboration cods for package Test since it contains
unused bits.

NOTE: To use the pragma, NO_ELABORATION, the /XTRA switch must
be used. The use of this pragma may affect the results of record
comparisons and assignments.

PRAGMA NO_ZERO
pragma No_Zerc (record_type_name) ;

If the named record type has "holes" between fields that are
normally initialized with zerces, this pragma will suppress the
clearing of the holes. If the named record type has no "holes”,
this pragma has no effect. When zeroing is disabled, comparisons
(equality and non-equality) of the named type are disallowed. The

use of this pragma can significantly reduce initialization time for
record objects.

PRAGMA PUT
pragma Put (value{, ...});

Pragma Put takes any number of arguments and writes their valus to
standard output at compile time when encountere® by the Compiler.
The arxguments may be expressions of any string, enumeration,
integer type, or scalar expression (such as integer’'size) whose
value is known at compile time. This pragma prints the values on
the output device without an ending carriage return; pragma
Put_Line is identical to this pragma, but adds a carriage return
after printing all of its arguments.

ii

TLD ADA COMPILER I960-AI5M-ZZ'(6:

1960 TamceT CoMPILER

This pragma is useful in conditionally-compiled cods to alert the
programmer tO problams that wmight not otherwise come to his
attention via an excsption or a compile-time erTor.

This pragma may appear anywhers a pragma is allowed.

PRAGMA PUT_LINE
pragma Put_Line (value(, ...});

Pragma Put_Line takes any number of argumsnts and writes their
value to standard ocutput at compile time when encountered by the
Compiler. The arguments may be expressions of any string,
esnumeraticn, integer type, or scalar expression (such as
integer’'size) whose value is known at compile time. This pragma
prints the values on the cutput dsvice and adds a carriage resturn
after printing all of its arguments; pragma Put is identical to
this pragma, but prints the values without an ending carriage
return.

This pragma is useful in conditiocnally-compiled code to alert the
programmer to problems that might not otherwise come to his
actention via an exception or a compile-time error.

This pragma may appear anywhare a pragma is allowed. ‘

PRAGMA REGISTER
pragma Register (abject_name, register_number) ;

This pragma allows limited register dedication to an object for the
purpose of loading registers with complex Ada expressions or
storing registers into complex operands within machine cods
insertion subprograms. The Compiler dsdicates the specified
register to the specified object until the end of the scope is
reached or until it is released through a call to the subroutine,
Unprotect, in the Machine Code package. The object_name is the
name of the cbject to be dedicated to the register and
register number is the register number (without the "R" prefix that
is valid for the particular target).

These objects may be used on the left or right side of an
assignment statement to load or store the register, respectively.

ii

1960 TamrgET COMPILER

TLD ADA COMPILER I960-A?A-%9

PRAGMA TCB_EXTENSION
pragma TCB_Extension (value);

This pragma is used to extend the size of the Task Control Block on
the stack. It can be used only within a task specification. The
parameter passed to this program must be static and represents the
size to be extended in bytes.

PRAGMA UNALIGNED
pragma Unaligned(name, ...);

This pragma is used to accommodate an access object that containg,
or might contain, an address which is not four byte aligned. The
name parameter identifies an access type or cbject that contains
unaligned address values. The name parameter may also refer to a
formal parameter passed by address that might be occasionally
passed an unaligned actual parameter.

PRAGMA WITHIN_PAGE

pragma Within_Page (type_name) ;
pragma Within_Page (cbject_name);

NOTR: The type_name or cbject_name must have been previously
declared in the current declaration region and these desclarations

must be in a static data context (i.e., in a package
specification or body that is not nested within any procedure or
function) .

This pragma instructs the compiler to allocate the specified
cbject, or each cbject of the specified type, as a contiguous block

of mamory words that does not span any page boundaries (a page is
4096 bytes).

The compiler generates a warning message if the allocation is
noncontiguous or not yet determined (see the description of pragma
Contiguocus, above). Additionally, the compiler generates a warning
message if the pragma is in a nonstatic declarative region. If an
cbject exceeds 4096 bytes, it is allocated with an address at the
beginning of a page, but it spans one or more succesding page
boundaries and a warning message is produced.

ii

1960 TarcET COMPILER

TLD ADA COMPILER 1960-A9A-%g

PRAGMA VOLATILE
pragma Volatile (variable_simple_name) ;

This pragma performs the same function as Pragma Shared, however,

it also applies to composite types as well as scalar types or
access types.

IMPLEMENTATION-DEPENDENT ATTRIBUTES
ADDRESS_TYPE

The attribute ‘Address_Type is used in a length representation
clause to indicate that the address type is to have the
characteristics of an access descriptor (with a tagged bit).

The format is:

for type-oame’Address_Type use Access_Descriptor

TASK_ID

The attribute ‘Task_ID is used only with task objects. This
TLD-defined attribute returns the actual system address of the task
object.

I0_ATTRIBUTE

The attribute ‘IO_Attribute is used to determine whether or not an
object is an IO_Object.

When IO_Attribute is applied to an object, it returns a value of
type Object_Attribute_Type, which is a private type declared in the
package System.

If the object jis an IO_Object, then the value returned is the
address of a record containing the address of the object and the
number of bits in the object including any bits necessary for
padding (and does not include the preceding 16 bytes of reserved
user space).

If the object is not an IO _Object, then the value returned is

Invalid_Object_Attribute, which is also defined in the package
System.

idi

TLD ADA COMPILER 1960-ADA-2C
1960 TarceT COMPILER 5-29

The association of an IO_Attribute with its IO_Object is maintained
only at compile time. For example, if an IO _Object is passed as a
parameter to a subprogram, then within the subprogram, the
I0_Attribute for that I0_Object has the value
Invalid_Object_Attribute.

The following is an example of obtaining the valus returned by
*I0_Attribute for the IO_Object Buffer_Object shown in the example
above (under the Pragma IO_Object subsection heading).

A procedure which reads information into an IO_Objact is defined as
follows:

procsdure Get (...; Buff Attr : System.Object_Attribute_Typs;
The procedure is called as follows:
Get (..., Buffer_ Object’'IO_Attribute, ...);

In the above example, the address of a record containing the
address of the cbject and the number of bits in the object are
returned for Buffer_Object.

PACKAGE SYSTEM

The specification for this package is included in the System_.Ada
file.

REPRESENTATION CLAUSES

Record repraesentation clauses are supported to arrange record
components within a record. Record components may not be specified
to cross a word boundary unless they are arranged to encompass two
or more whole words. A record component of type record that has
record representation clause applied to it may be allocated only at
bit 0. Bits are numbered from right to left with bit 31 indicating
the sign bit.

When there are holes (unused bits in a record specification), the
compiler initializes the entire record to permit optimum assignment
and compares of the record structurs. A one-time initialization of
these holes is beneficial because it allows block compares and/or
assignments to be used throughout the program. I£ this
"optimization® is not performed, record assignments and compares

would have to be performed one component at a time, degrading the
code.

To avoid this initializacion, the user should check to be certain

id

.

TLD ADA COMPILER 1960-ADA-2C
1960 TarGeT COMPILER 5§ - 30

that no holes are left in the record structure. This may be done
by increasing the size of the cbjects adjacent to the hole or by
defining dummy record components that £ill ths holes. If che
latter method is used, any aggregates for the structurs must
contain values for the holes as well as ths “"real® components.
Even with the extra components, this approach should optimize space
and speed in comparison to processing one compeonent at a time.

If the compcnent_clause of a record representation specification is
not in the same order as the component_list of the record
specification, the entire record is initialized, as indicated
above.

Address clauses are supported for variable ocbjects and designate
the virtual address of the object. The Compiler System uses
address specification to access ocbjects allocated by ncn-Ada means
and does not handle the clause as a request to allocate the oabject
at the indicated address. Address clauses to specify the address

to which code should be relocated, are not supported for -

subprograms, packages, or tasks.

NOTE: Length clauses are supported for ’‘Size applied to cbjects
other than task and access type cbjects and denote the number of
bits allocated to the cbject.

Length clauses are supported for ‘Storage_Size when applied to a
task type and denote the number of words of stack to be allocated
to the task.

Length clauses are supported for 'Storage_Size applied to an
access type and indicates the number of storage units to be
reserved for the collection.

Bnumeration representation clauses are supported for value ranges
of Integer’'First to Integer’Last.

An alignment representation clause has been added that
corresponds to Ada 9X that rsquests a subtype or object to be
allocated to an address that is a multiple of the alignment
value. Its syntax is

for object_or_subtype’Alignment use expression-

The alignment expressicn must be a static value. The use of
multiple alignment clauses within the same control section will
result in the containing control section assuming an alignment
value which is the greacest common multiple (GCM) of the
alignment factors occurring within the control section.

ii

TLD ADA COMPILER 1960-ADA-2C
1960 Tarcer ComPILER 5§ - 31
CONVENTIONS FOR IMPLEMENTATION-GENERATED

NAMES DENOTING IMPLEMENTATION-DEPENDENT
COMPONENTS

The Compiler System defines no implementation dependent names for
compiler generated record components.

Two naming conventions are used by TiDacs. All visible run time
library subprograms and kernel services begin with the character
*"A_". Global Run Time System data names begin with the characters
"AS". The unique name created by the compiler for overload
resolution is composed of the user nams appended with *_$*, plus a
maximum of three characters derived from the compilation unit name,

followed by three digits representing the ordinal of the visible

name within the compilation unit. The maximum length of this name
is 128 characters.

INTERPRETATION FOR EXPRESSIONS APPEARING
.IN ADDRESS CLAUSES

Address expression values and objects of type Address represent a
location in the program’'s linear address space.

RESTRICTIONS ON UNCHECKED CONVERSIONS

Unchecked conversion of generic formal private types is not allowed.

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
oF INPUT-0OuTPUT PACKAGES

PACKAGE DIRECT_IO (LRM 14.2.5)

PACKAGE IO_EXCEPTIONS (LRM 14.5)

PACKAGE SEQUENTIAL_IO (LRM 14.2.3)

Input-Output packages are described in the Reference Document for
the TID Ada i960 Run Time Svetem,

ii

TLD ADA COMPILER 1960- ADA-ZC
1960 TarGceT CompILER - 32

PACKAGE TEXT_IO (LRM 14.3.10)

The following implemencation-defined types are declared in Text_lo:

type Count is integer range 0 .. S11;
subtype Field is Integer range 0 .. 127;

6 1960 TARGET CoMPILER CHARACTERISTICS

The characteristics of the target compiler are described in this
section.

6.1 1960 Run TiMe CONVENTIONS .
The Run Time conventions established for the TLD Ada Compiler and Run

Time System are explained in the Reference Document for the TID Run
Tima System., i960 Target, This information is necessary vhen the
user’s application softwars is coded in a language other than Ada.

6.2 EXTERNAL NAMES

External names are supported to a maximum length of 128 characters or
the limits imposed by the i960 Linker. The system dependent character,
"_", is left as a "_" in external names since it is a legal character
for the Linker.

7 REeLOCATABLE 0BJECT FILES

TlLDada produces Relocatable Object Files containing the results of the
compilation.

The TLDada Compiler partitions the generated object module into several
separately relocatable control sections. By default, instructions are
allocated in control section, SISECTS. Literals are allocated in a
read-only operand control section, $CONSS. Statically allocated data
are allocated in control section $DATAS. The NOCSEG switch may be used
to combine literals and data into the same control section.

The TLD Relocatable Object File is described in the Reference Document
:) 1D 32-Bit Uni 1_Lin} {960 T

ii

TLD ADA COMPILER
1960 TarcET CoMPILER

The control section names and actributes are:

Name:

Attributes:

INDIRECT
MAPPED
RAM/ROM
SU/ROM
EMPTY
DMA
MPRAM
PREG
ROMONSP
o/t
PRLL

Relocatable Control Sections

sconss
Constants

DIRECT
MAPPED
RAM_OR_ROM
MAIN MEMORY
NOT EMPTY
UNPROTECTED
UNPROTECTED
UNPROTECTED
RO,MECH UNSP
OPERAND
MODULE ALLOC

1960-ADA-2C
5 - 33

SDATAS TIMAPPED
Data Unmapped
DIRECT DIRECT
MAVPED UNMAPPRD
RAM RAM
MAIN_MEMORY MAIN MEMORY
NOT EMPTY NOT RMPTY
UNPROTECTED UNPROTECTED
UNPROTECTED UNPROTECTED
UNPROTECTED UNPROTECTED
UNPROTECTED UNPROTECTED

OPERAND MEM
MODULE ALLOC

OPERAND MEM
MODULE ALLOC

These attributes are also described in the Refarence Document for the
IR _32-Bit Universal Linkex, i960 Target, Sections 3 and 4.2 describe
TlDlnk’s use of attributes, Appendix A describes the TLD Relocatable

Object File attributes and associated values.

8 TARGET REFERENCE TABLE

The following table provides i960 parameter values.

ii

..

..

-- type address is range 0..168FFFF_FFFF#;
type address is range -2_147_483_648..2_147_483_647;
for address‘size use 32;

-~ an {960 33-bit sccess descriptor---we ignore the 33rd bit here
type access_descriptor is range -2_147_483_648..2_147 483_647;
for sccess_descriptor'size use 32;

typs unsigned is range 0..2_147_483_647;
for unsignedisize use 31;

type short_integer is renge -32_768..32_767;
for short_integer‘size use 16;

type long_integer is range -2_147_483_648..2_147_483_647;
for long_integer'size use 32;

== Note: The order of the slements in the OPERATING_SYSTEMS and NAME
-~ erumerations CANNOT be changed--they must correspond with the velues
=+ in the CONFIG.CFG file.

type Operating_Systems is (Unix, Netos, Vms, Ucsd, Msdos, Bare, Trump, RTX);

type Name is (Pmachine, Ms16000, vax, Af1750, 28002, 28001,
Gould, Pdp11, MAB000, Pe3200, Caps, Amdahi,
18086, 180286, 180386, 280000, Ns32000, lbmst,
M6B020, Nebuls, Neme X, Hp, Bb1, Hawk, R1666, 1960);

type Object_Attribute_Type is private;
Invalid_Object_Attribute : constant Object_Attribute_Type;

system_name: constant name := 1960;
os_name: constant operating_systems :s RIX;

subtype priority is integer range 1..20; -- 1 is default priority.

--- note: the following priority is probably not valid for the Hawk
-=- and will have to be modified when tasking is implemented
subtype interrupt_priority is integer range 1..15;

pragms put_line(’>!, >! >, ¢, gystem name,
] ', |,|, L os_name, [] ', ‘<t |<|' (L H

-- Lenguage Defined Constants

storsge_unit: constant := §;

memory_size: constant := 16#4000_0000#; -- 256X words per segment
min_int: constant := -2**31;

max_int: constant := 2**31-1;

max_digits: constant := 15;

wax_mantissa: constant := 31;

fine_delta: constant := 2.0%*(-31);

ticks_per_second : constant := 1_000_000.0; -- Clock ticks are 1 usecs.
tick : constant := 1,0/ticks_per_second;
ticks_per_rtc : constant := 16#100_0000#;

-- system specific constants

address_0: constant address := 0; -+ 2ero address

null_sddress: constant address := 0; == Null ptr ss system.address
null_AD : constant access_descriptor := 0; -- null AD, untegged

private
type Object_Attribute_Type is record
Object_Address : Address := null_address;
Object_Size : Integer := Integer‘'first;
end record;
Invalid_Object_Attribute : Constant Object_Attribute_Type :=
(Object_Address => null_address,
Object_Size => Integer'first);
end system;

cen The following software is the property of TLD Systems, Ltd. .
--.n Copyright (C) TLD Systems, Ltd., 1992)
amall "
seen When this softuare is deliversd to the U.S. Goverrment, -
--- the following applies: -
cesl »
.--n RESTRICTED RIGHTS LEGEND b
--+® Uge, duplication, or disclosure by the Goverrment is subject to "
---% regtrictions as set forth in subpsrgraph (c)(1)(ii) of the Rights in *
-=-® Technical Dats snd Computer Software clause at 52.227-7013. "
ce-n TLD Systems, Ltd., Torrance, California .
ee doenea L L T Y L e T cescsusecscccancassnn +
== | Source file name:

-- SYSTEM . ADA

== | Packages defined:

.- system - system constained constants snd types

-- | Revision history:

.- 07-21-88 giw new code for Hawk-32:

.- add types: short_integer, long_integer

.- add ‘osvs' to operating_systems type

- add 'hawk' to name type

-- change priority range to 1..200

-- change address range to 0..168FFFFFFFF#

-- change address'size to 32 bits

.- change memory_size to 16#10000000#

D R L L L L Ty S T T *
package system is

-- SRS Requirements:

--#extract requirements

--Mione.

~-#end

e+ §eccmcececncrercannctcssnr cerssraancacevotcccanctterssanoannsnnos cmvoce +
== | Package name:

.- system - system constrained constants and types

-« | Initialization entry:

.- none

== | Types/subtypes defined:

.- address

-- unsigned

.- short_integer

.- long_integer

.- operating_systems

-- name

.- priority

-- interrupt_priority

-- Object_Attribute_Type

== | Constants defined:

-- system_name

-- os_name

.- storage_unit

-- wmemory_size

-- min_int

.- max_int

.- max_digits

.- max_mantissa

.- fine_delts

- ticks_per_second

.- tick

.- ticks_per_rtc

-- address_0

.- rnut |_sddress

- null_AD

-- Invalid_Object_Attribute

ee #ecnccccacsscnnca emcsceancen essecscccrcasnererannasessnssassasrenssrene +

5-7¢

